West Hawk Lake Property Falcon Lake Area Manitoba, Canada

2011-2012 EXPLORATION ASSESSMENT REPORT FOR PHASE ONE PROGRAM OF THE MANITOBA MINERAL LEASE ML-018

Prepared for:

Manitoba Mines and Energy Minerals Division

Report Date: February 27, 2013

Report # CSM-WH-13-01

Prepared by:

John Davies PHD & Chris North B.Sc., MBA

Canadian Star Minerals Limited 129 Midland Avenue Toronto, Ontario Canada M1N3Z8

NAD 83, UTM Zone 15N at approximately 338000 E; 55512000 N NTS-52E

ACKNOWLEDGEMENTS

Canadian Star Minerals would like to acknowledge the contributions of Seymour Sears and Joan Barry to the report. Background information and maps included in this report were taken from the NI 43-101 Technical Report, High Lake – Electrum Lake Kenora Mining Division and West Hawk Lake, Falcon Lake Area, Manitoba completed for Canadian Star Minerals Limited and published in 2012 by Sears Barry and Associates. Both Seymour and Joan have worked in the western section of the Wabigoon Subprovince over many years and have contributed greatly to the geological knowledge of the area.

TABLE OF CONTENTS

1.0 Summary	5
2.0 Introduction	
2.1 Purpose of Report	
2.2 Sources of Information	
2.3 Units of Measure	8
3.0 Reliance on Other Sources	10
4.0 Property Description and Location	11
4.1 Location	
4.2 Property Description	11
4.2.1 West Hawk Lake Property	
4.3 Royalties	
4.3.1 West Hawk Lake Property	
4.4.1 West Hawk Lake Property	
4.5 Permits	
4.6 Option Terms - West Hawk Lake Property	
4.7 Risks to Access or Ability to Perform Work	
5.1 Accessibility 5.1.1 West Hawk Property - Accessibility 5.2 Climate	16
5.3 Local Resources and Infrastructure	
5.4 Physiography	
6.0 History	18
6.1 Ownership History	
6.1.1 West Hawk Lake Property Ownership History	
6.2 Exploration History	
6.2.1 West Hawk Lake Property Exploration History	
6.3.1 West Hawk Lake Historical Resources	
6.4 Past Production	22
6.4.1 West Hawk Lake Property Past Production	22
7.0 Geological Setting and Mineralization	22
7.1 Geological Setting	
7.1.1 Regional Geology	
7.1.2 Local Geology7.1.3 West Hawk Lake Property Geology	
West Hawk Lake, Manitoba Canada	23

7.2 Mineralization	25
7.2.1 Mineralization West Hawk Lake Property	25
8.0 Deposit Types	30
•	
9.0 Exploration	
9.1.1 West Hawk Lake Property Exploration Program	
9.1.3 Geological Mapping	
9.2 Discussion of Results	39
9.2.1 West Hawk Lake Lake Property Geophysical Results	
9.2.2 West Hawk Lake Property Geology	
9.2.3 Historic Workings	
9.2.5 Recommendations	
40.0 Deilling	40
10.0 Drilling	
10.2 Diamond Drilling Results	
10.2 Diamond Drilling Results	42
11.0 Sampling Methodology	46
11.1 West Hawk Lake Property	46
12.0 Data Varification	47
12.0 Data Verification	
12.2 Adequacy of Data	
12.2 Adequacy of Data	
13.0 Adjacent Properties	50
14.0 Interpretation and Conclusions	50
15.0 Recommendations	51
15.1 West Hawk Lake Property	
15.2 Phase III West Hawk Property Recommendations	
16.0 Project Expenditures	52
17.0 References	55
18.0 Certificate of Qualifications	58
19.0 Date and Signature Page	60

FIGURES

Figure 1 Regional Location Map9				
Figure 2 Property Location Map12				
Figure 3 West Hawk Lake Claim Group – Mining Lease ML18				
Figure 4 Location of the Wabigoon Subprovince in the Superior Geological Province 24				
Figure 5 Map of the western part of the Wabigoon Subprovince showing greenstone				
belts and known major gold deposits. (based on Wheeler et al., 1997)25				
Figure 6 Geology of the High Lake/Electrum Lake Area (geology from OGS, 2006)27				
Figure 7 Geology of the West Hawk Lake Area				
Figure 8 West Hawk Lake Gold Occurrences and Proposed Drill Holes29				
Figure 9: Depositional model for Canadian gold deposits (modified from Poulsen et al,				
2000)				
Figure 10 West Hawk Lake Contoured Total Field Magnetic Data				
Figure 11 West Hawk Lake – Contoured Fraser Filtered VLF-EM Data34				
Figure 12 Canadian Star 2011 Geology Map36				
Figure 13 WHL Rock Sample Locations 2011				
Figure 14 Canadian Star 2012 Geology Map38				
Figure 15 2012 West Hawk Lake Drill Hole Locations				
Figure 16 Geology of the Waverly Shaft and S. Sears' Sample Locations				
Figure 17 Geology of the Waverly Shaft and S. Sears' Sample Locations				
g				
TABLES				
Table 1 West Hawk Lake Claim List – Manitoba Mining Lease # ML-1814				
Table 2 Historical Resources on the West Hawk Lake Property				
Table 3 Known Prospects on the West Hawk Lake Property				
Table 4: West Hawk Property Diamond Drill >2 g/t Au Mineralized Intervals42				
Table 5: Phase II Budget				
ŭ				
PHOTOS				
Photo 1 Capped Sunbeam Shaft on the West Hawk Lake Property				
Photo 2 2012 West Hawk Lake Core From The Drill Hole CSM-WH-12-07 Waverly				
Raise Area44				
APPENDICES				
Appendix I Abbreviations and Symbols				
Appendix II Check Sample Descriptions and Assay Results				
Appendix III J. Davies Sample Descriptions and Assay Results				
Appendix IV Drill Logs – DDH-WH-12-01 through DDH-WH-12-08				
Appendix V Assay Certificates - Phase I Drill Program107				

1.0 Summary

Canadian Star Minerals Ltd. (Canadian Star), entered into an option agreement dated February 01, 2011 and amended on January 26, 2012, to acquire from Queenston Mining Inc., a 75% interest in the West Hawk Property (WHL Property), a group of 23 claims (336 hectares) held under a Manitoba Mining Lease (ML-018). Canadian Star has completed in excess of \$385,000 of exploration work on the WHL property in 2011 and 2012. This report outlines the exploration work programs and results.

The WHL Property hosts six known gold prospects and at least 4 other gold occurrences. Two of the gold prospects have been explored by shafts and limited underground workings. The rocks that underlie the WHL Property are also very favourable for the discovery of new gold occurrences.

The WHL Property consists of 23 mining claims totaling 336 hectares. It is held under a Manitoba Mining Lease (ML-018) and, due to its location within the Whiteshell Provincial Park, is subject to special regulations with regard to mining and processing.

Previous work completed at the WHL Property includes surface stripping and trenching, diamond drilling and underground exploration. The underground work includes two shallow, vertical shafts, a limited amount of underground drifting and the collection of a 4,257 ton bulk sample from which 24.7 kg of gold was reportedly recovered. Based upon this work, previous explorers have estimated "historic" resources on three mineralized zones totaling 504,000 tons grading 0.40 ounces per ton (457,000 tonnes grading 13.9 grams per tonne). These estimates were made prior to the implementation of Canadian Securities Administrators' National Instrument 43-101 (NI 43-101), and the qualified person (QP) has not completed sufficient work to classify the historical estimates as current mineral resources or reserves. The historical estimates are not NI 43-101 compliant and should not be relied upon.

The WHL Properties is underlain by composite, Archean aged, felsic to mafic intrusive bodies that have been emplaced into mafic to felsic volcanic and minor sedimentary rock sequences. These rocks are part of the Lake of the Woods greenstone belt. Gold mineralization occurs on the properties in association with shear zones, breccia pipes and lode-type quartz veining.

The WHL Property is situated 2 km north of the Trans Canada Highway. The properties share a similar geological setting as well as local services and existing infrastructure. The property is

considered to be a property of merit based upon known gold occurrences and the excellent potential for additional new discoveries.

Sears Barry and Associates was retained by Canadian Star in 2010 to complete a NI 43-101 for Canadian Star's WHL property and the nearby High Lake Electrum Lake Property (HLEL) also held by Canadian Star. A multi-phased work program was proposed on each property. For the purposes of this report the WHL Property will be focused on.

A Phase I work program on the WHL property recommended surface stripping and systematic sampling of the known occurrences, preliminary geophysical surveys to prioritize targets and a modest diamond drilling program designed to confirm the known gold zones and provide samples for assaying and petrological studies. The Phase 1 was estimated to cost \$385,000 with the actual cost being in line at approximately \$385,000 subject to final first phase expenses. A second phase consisting mainly of diamond drilling is estimated to cost approximately \$850,000.

The following report describes the results obtained from the exploration programs conducted by Canadian Star's exploration staff and contractors in 2011 and 2012.

2.0 Introduction

2.1 Purpose of Report

The HLEL and WHL Properties are currently owned or held under option agreements by Canadian Star Minerals Ltd. (Canadian Star), a privately held, non-reporting Ontario based company. This report summarizes the scientific and technical data and current exploration data available for the WHL Property. A subsequent recommendation for a future work program to advance the current exploration and possible development is also included.

2.2 Sources of Information

The discussions of historical data are based upon information obtained from public domains as well as from extensive personal experience in the evaluation of precious metal deposits in North America and Africa. These sources are summarized below and a more detailed listing can be found in section 27.0 'References'.

- Review of geological reports and maps or summaries thereof, produced by the Manitoba Mines and Energy Branch, Mineral Resources Division.
- Review of previous assessment work filed with the Ministry of Northern Development,
 Mines and Forestry, Ontario.
- Personal experience by Dr. John Davies mapping the Western Wabigoon for the Ontario Geological Survey.
- Information on adjacent and area mining operations and exploration properties was obtained from private company websites and from public company disclosure materials filed on SEDAR.
- Discussions with persons knowledgeable on the Properties and area.
- Review of published reports and maps listed in Section 27.0 of this report.

2.3 Units of Measure

In this report, all historical gold and silver values are reported in ounces per ton (oz/ton) with the approximate metric equivalent following in brackets. All other metals are in percent (%). All measurements are in metric units unless otherwise stated. All dollar amounts are in Canadian funds unless otherwise stated.

Conversions used in this report area as follows:

1 meter = 3.2808 feet 1 troy ounce = 31.1035 grams

1 foot = 0.30480 meters 1 gram = 0.0322 troy ounces

1 tonne = 1.1023 tons 1 troy ounce/ton (oz/ton) = 34.286 grams/tonne (g/t)

1 ton = 0.9073 tonnes 1 gram/tonne (g/t) = 0.0292 ounces per ton (oz/ton)

A list of abbreviations used in this report is found in Appendix I.

Figure 1: Regional Location Map

3.0 Reliance on Other Sources

All conclusions, opinions and recommendations concerning the West Hawk Lake Properties are based upon the information available at the time of this report.

Information relating to the West Hawk Lake Property was obtained from the Mining Recorder at the Mines Branch of the Manitoba Ministry of Energy and Mines. Based upon the information provided, the title to the Mining Lease that makes up the WHL Property is considered valid.

4.0 Property Description and Location

4.1 Location

The WHL Property is located in Southwestern Manitoba, approximately 5 km west of the Ontario-Manitoba border near the community of West Hawk Lake. It is centered approximately 53 km west of the town of Kenora and 130 km east of the city of Winnipeg. It lies immediately north of Highway #1 (the Trans Canada Highway) south of the Whiteshell Provincial Park. It is centered in UTM NAD 83, Zone 15N, NTS 52E at approximately 338000 E; 55512000 N (Long 95°15′00″ W; Lat 49°44′06″ N). A diagram illustrating Canadian Star's WHL and HL/EL properties is presented in Figure 2.

4.2 Property Description

4.2.1 West Hawk Lake Property

The WHL Property consists of a single Mineral Lease issued by the Manitoba Energy and Mines Branch. The lease, numbered ML-18, was issued for a 21-year period on the 1st day of April, 1992. It expires on April 01, 2013 and is renewable for an additional 21-year period providing expenditures totaling \$1250 per hectare have been incurred during the lease period. Annual renewal fees of \$8 per hectare are required in the first lease period and \$12 per hectare are required in subsequent lease periods. The WHL Mineral Lease contains an area of approximately 318.68 hectares and comprises 23 original Mining Claims. The location of the lease is shown on Figure 4 and the original Mining Claims are listed in Table 4.

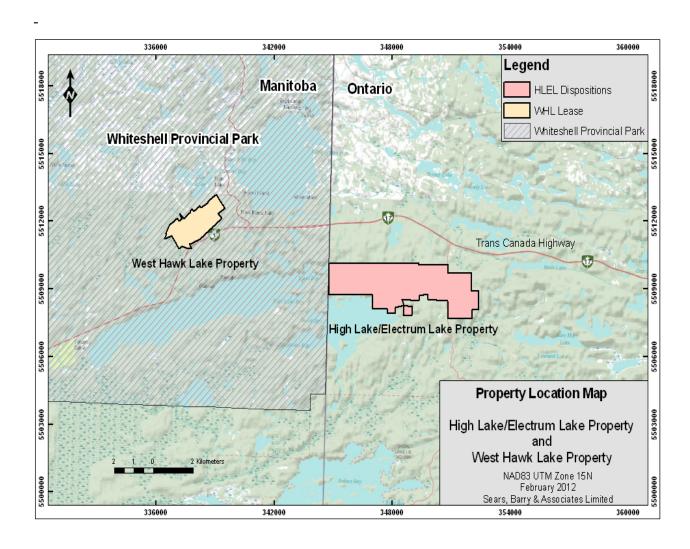


Figure 2: Property Location Map

Figure 3: West Hawk Lake Claim Group - Mining Lease ML18

Table 1 West Hawk Lake Claim List – Manitoba Mining Lease # ML-18

Survey No.	Claim Name	Survey No.	Claim Name
93	Nora	221	Star #7
152	Fortune	222	Star #4
153	Gold Coin	223	Star #3
154	Cinderella	224	Key 1
155	Waverly	225	Key 2
156	Sunbeam	226	Key 3
157	Moonbeam	227	Key 4
158	Sundog	228	Key 5
217	Star #1	230	Pat 3
218	Star #6	231	Pat 1
219	Star #5	232	Pat 2
220	Star # 2		

4.3 Royalties

4.3.1 West Hawk Lake Property

There are no royalties payable on the West Hawk Lake Property.

4.4 Environmental and Other Liabilities

4.4.1 West Hawk Lake Property

The West Hawk Lake Property lies within the Whiteshell Provincial Park. The terms of the Mineral Lease allows for exploration, development work, mining production but mineral processing must be carried out outside the Park. Any potential ore from the West Hawk Lake Property could be transported 6 km east to the HLEL Property.

There are two old mine shafts (Waverly and Sunbeam) and one raise to surface (Waverly Raise) on the WHL property. Both of the shafts have relatively new cement caps as required by the Manitoba Energy and Mines Branch. These caps are expected to last for many decades but

there is an obligation to maintain them. The cement cap on the Waverly Raise is cracked and, although presently is adequate, should be replaced by a new one in the near future.

4.5 Permits

Work on the WHL Properties is considered early stage exploration and the only permits required will be advance notice of drill hole locations, excess stripping of the terrain and routine notification of planned drill programs with Manitoba Conservation Authority (MCA). Exploration Permits were applied for by Canadian Star in both 2010 and 2012 and subsequently issued by MCA for the reported exploration programs.

4.6 Option Terms - West Hawk Lake Property

Canadian Star Minerals Ltd. entered into an option agreement dated February 01, 2011 and amended on January 26, 2012, to acquire from Queenston Mining Inc., a 75% interest in the West Hawk Property (WHL Property), a group of 23 claims (336 hectares) held under a Manitoba Mining Lease (ML-018). The interest is to be earned in stages by satisfying the following obligations:

- 30% By carrying out a work program of \$200,000 by August 01, 2012 and issuing 100,000 common shares in the capital of the company once its shares become listed on either the Toronto Stock Exchange or the TSX or Venture Exchange; by carrying out a further \$400,000 of expenditures and issuing an additional 100,000 shares in the capital of the company by August 01, 2013.
- 15% By carrying out a further \$600,000 of expenditures and issuing an additional 100,000 shares in the capital of the company by August 01, 2014.
- 15% By carrying out a further \$600,000 of expenditures and issuing an additional 100,000 shares in the capital of the company by August 01, 2015.
- 15% By completing a study of the economic feasibility of the property.

4.7 Risks to Access or Ability to Perform Work

Special conditions apply to the exploration and development work currently being carried out on the WHL Property. Drilling and other work involving excessive noise levels are restricted to daylight hours due to the proximity of the local communities of Star Lake, Hawk Lake and Falcon Lake. In addition, processing of ore would not be permitted onsite. Any future mining

operation will require trucking of the ore to a facility that is outside of the boundary of Whiteshell Provincial Park. The \$200,000 work commitment on the WHL Property must be fulfilled by August 01, 2012. This date has been extended from February 01, 2012 pursuant to the January 26, 2012 amendment to the February 01, 2011 Option Agreement with Queenston Mining Inc.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Accessibility

5.1.1 West Hawk Property - Accessibility

The WHL property lies immediately north of the Trans-Canada Highway, 6 km west of the provincial border with Ontario. Access to the West Hawk Property is via the Trans Canada Highway to Highway 64 (approximately 3.7 km west of the Ontario-Manitoba border) then for 1 km north to the village of Hawk Lake, then west for 800 metres to Highway 301.

Highway 301, which links the communities of West Hawk Lake and Falcon Lake, bisects the eastern part of the claim block. An all weather gravel road extends northwest from this highway through the central part of the project area to cabins on Star Lake. Several passable, old gravel and mud roads lead to the Waverley and Sunbeam shafts and to other parts of the claim. A power line transects the property and a natural gas pipeline lies immediately adjacent and parallel to its southeast boundary. The main line of the C.P.R. passes east-west approximately 9 km to the north. It is accessible via Manitoba highways 301 and 44.

5.2 Climate

In the area of West Hawk Lake, Manitoba, the climate is conducive for year-round activities in exploration, mine development and mine operations, and imposes only slight challenges in the winter season. The average summer temperature ranges from 16.7 to 19.5°Celsius (C) and the average winter temperature ranges from -12.9 to -17.3°C. The extreme yearly maximum is

24.4°C and the extreme minimum is -22°C. The average annual rainfall is 51.4 cm and snowfall is 158.2 cm (Environment Canada, 2011).

5.3 Local Resources and Infrastructure

Electrical power lines pass north-south along the Shoal Lake road in the eastern part of the HLEL claim group. A major, high-voltage transmission line passes east-west on the north side of Highway 17 approximately 2 km north of the HLEL Property. The WHL property is also traversed by a high voltage transmission line. The TCPL gas pipeline passes along the north HLEL claim boundary and along the south claim boundary of the WHL property. The closest town is Kenora, located approximately 55 km to the east of the two properties along the TCH. Kenora offers accommodation, restaurants, general supplies, medical facilities, heavy equipment contractors and a small regional airport. The city of Winnipeg, Manitoba is located approximately two hours drive to the west, and Thunder Bay, Ontario is six hours drive to the east, also along the Trans Canada Highway. Both of these major centers have international airports and other infrastructure to support exploration and mining development, including mining equipment and engineering companies and other skilled mining personnel. The town of Red Lake, Ontario, three hours by paved highway northeast of Kenora, has two currently operating gold mines, and a long history of mining with necessary infrastructure and skilled labour.

5.4 Physiography

Topography in the WHL Properties is generally flat to rolling and consists of local bedrock ledges and rounded ridges separated by relatively large swamps. Maximum relief is approximately 25 metres with elevations ranging from 340 to 370 metres above mean sea level (amsl). Overburden is typically shallow to moderate over most of the upland portion of the two Properties. All of the drainage in the project area is part of the Arctic watershed via the Winnipeg river system.

6.0 History

6.1 Ownership History

6.1.1 West Hawk Lake Property Ownership History

Prior to 1950, the claims that now make up the HLEL mining lease were held by various individuals and companies. In 1950, the current property was acquired by Homestake Explorations Limited. In 1990, Homestake Exploration Limited merged with Queenston Gold Mines Limited to form Queenston Mining Inc. which became the new, underlying owners of the property. Between 1950 and 2005, the property was optioned out to several small mining companies who completed several exploration and development programs. In 2005, the Optionee, Whiteshell Ventures Ltd., failed to meet the required terms of their option agreement and the property reverted 100% back to Queenston Mining Inc. In September, 2009, Canadian Star Minerals Limited signed a letter of intent with Queenston to acquire an interest in the property and completed an option agreement effective February 1, 2011.

6.2 Exploration History

6.2.1 West Hawk Lake Property Exploration History

Gold was reportedly first discovered in 1910 on an adjacent property north of the West Hawk claims by J. H. Hicks with early exploration and development completed in that area by Pennica Reef Gold Mines Limited. This resulted in increased exploration activity in the surrounding area. The following summarizes the exploration history on the West Hawk Property:

- 1912-1928 Gold was first discovered on the Sunbeam property by G.R. Thurber in 1912; prospecting, sampling and trenching was reported on the Sunbeam and surrounding claims over the next 16 years.
- 1928-1934 A minor amount of shaft sinking was completed at Sunbeam and Waverly by individuals.
- 1936-1940 Sunbeam Kirkland Gold Mines Limited Sunbeam Prospect completed surface trenching, 28 drill holes (1525 m), sunk a 134 m shaft with work on 4 levels and shipped a 4,257 ton bulk sample to a Kenora area mill (recovered 24.7 kg Au).
- 1941-1946 Goldbeam Mines was formed, after reorganizing Sunbeam Kirkland Gold Mines Limited, and completed 8,516 m of drilling on targets other than the Sunbeam, sunk a 152 m shaft and drove 3 levels on the Waverly Prospect.

- 1950 Homestake Exploration Limited acquired the property.
- Star Lake Gold Mines optioned the property and completed geological mapping and a ground magnetometer survey.
- 1976 Whiteshell Ventures acquired the option on the property from a principal of Star Lake Gold Mines.
- 1980 Whiteshell Ventures was acquired by Goldbeam Resources Limited.
 - 1980-1983: completed geological mapping, sampling and metallurgical testing
 - 1985-1986: dewatered, surveyed, sampled and geologically mapped the Sunbeam and Waverly workings; drilled 9 holes (437 m) from underground on the Waverly 150 level; completed a local magnetic and VLF-EM survey and 8 drill holes (639 m) from surface; completed limited leach testing on material from the Sunbeam and Waverly zones; a proposal was made to drive a ramp to the 475 level and mine the Sunbeam pipe but this was not completed.
- Homestake Minerals Limited and Queenstake Gold Mines Limited merged to form Queenston Mining Inc. and became the new underlying owners of the property.
- 2005-2009 Whiteshell Ventures/Goldbeam Resources Limited failed to meet the terms of the option agreement and the title of the property returned to 100% Queenston Mining Inc.; in 2009 an airborne geophysical survey was completed and the boundary of the Mining Lease was reestablished.

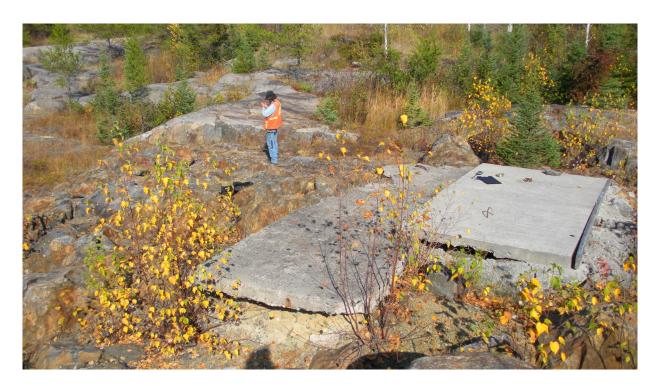


Photo 1 Capped Sunbeam Shaft on the West Hawk Lake Property

6.3 Historical Resources

6.3.1 West Hawk Lake Historical Resources

Historical resources on the WHL include the following:

In 1983, John D. Godfrey, P.Geol., estimated, on behalf of Goldbeam Resources Ltd, approximately 504,000 tons of material grading from 0.405 ounces gold per ton (457,200 tonnes grading 13.88 g/t Au). The estimates were mainly based upon data available from various work programs completed between 1935 and 1946 under the supervision of a respected mining geologist, J.F. Wright. Seymour Sears (Qualified Person) was unable to verify these historic estimates as the supporting data is incomplete and they predate the implementation of NI 43-101. These estimates are not in accordance with NI 43-101 and should not be relied upon. They are presented in this report as a documentation of the past work for the purpose of outlining areas for future exploration on the WHL Property. They include:

Table 2 Historical Resources on the West Hawk Lake Property

Name of Zone	Tonnes	Grade (g/t)	Width (m)	Estimated by	Date of Estimate
Sunbeam	99,800	9.19	n/a	Goldbeam Resources Ltd	1983
Waverly Letain "A"	70,800	15.33	n/a	Goldbeam Resources Ltd	1983
Waverly					
Letain "B"	99,800	10.39	n/a	Goldbeam Resources Ltd	1983
Waverly Letain "C"	96,200	9.50	n/a	Goldbeam Resources Ltd	1983
Moonbeam	18,000	9.26	n/a	Goldbeam Resources Ltd	1983
	,				
Sundog	72,600	31.2	n/a	Goldbeam Resources Ltd	1983
TOTAL	457,200	13.88		(*Godfrey, 1983)	

6.4 Past Production

6.4.1 West Hawk Lake Property Past Production

In 1940, a bulk sample was mined from underground at the Sunbeam Deposit. A total of 4,693 tons (4,257 tonnes) was shipped to the Kenricia Mill in Kenora, Ontario. The average grade recovered from the material processed was reported to be 0.17 oz per ton (5.82 g/t) Au. This resulted in production of 797 troy ounces (24.7 kg) of gold.

7.0 Geological Setting and Mineralization

7.1 Geological Setting

7.1.1 Regional Geology

The West Hawk Lake Property lies in the Lake of the Woods greenstone belt which is located near the western end of the Wabigoon Subprovince, a 900 km long, east-west trending structural zone that is part of the Superior Province of the Canadian Shield (Figures 4 and 5). The Lake of the Woods greenstone belt is one of a series of six interconnected greenstone belts that make up the western part of the Wabigoon Subprovince in Northwestern Ontario (Blackburn et al., 1991). The greenstone belts, aged from 3.0 to 2.71 billion years (Ga), are made up of 60 – 80% ultramafic to felsic metavolcanic rocks of various types and 20 – 40% clastic and chemical metasediments. Numerous elliptical shaped granitic batholiths thought to be derived from the same parent magmas as the volcanic rocks (3.0 to 2.69 Ga old) are enclosed within the greenstone belts. All of these rocks have been extensively deformed and intruded locally by syntectonic and post tectonic plutons, dykes and small bodies of ultramafic to felsic composition.

The stratigraphy of the Lake of the Woods greenstone belt has been described in an OGS publication by Blackburn et al. (1991). It consists of three general stratigraphic assemblages:

1) the Lower Keewatin Supergroup consisting mainly of mafic volcanic rocks, mainly tholeitic basalts with minor intermediate to felsic zones; it is further subdivided into 5 subgroups, one of which occurs in the HLEL property area and extends into Manitoba (the Cedar Island Group);

2) the Upper Keewatin Supergroup composed of a mixture of tholeitic basalts, submarine calcalkaline felsic to intermediate and subarial volcanic rocks; in Ontario, it has been subdivided into 8 groups, 4 of which extend into Manitoba; 3) the Electrum Lake Supergroup, composed of

fluvial sedimentary rocks; it has been divided into two groups, one of which occurs within the HLEL property and extends into Manitoba near the WHL property.

The Lake of the Woods greenstone belt has been intruded locally by composite granitoid plutons, some of which are considered syn-volcanic. The High Lake Intrusive Complex, on the HLEL Property, and the Falcon Lake Igneous Complex, on the WHL Property, appear to be important structures with regards to the known gold mineralization in these areas.

7.1.2 Local Geology

Locally, the two properties are underlain by composite intrusive bodies (the High Lake Intrusive Complex and the Falcon Lake Igneous Complex) and a similar mafic to felsic volcanic and sedimentary sequence into which these intrusive bodies have been emplaced. This is best illustrated in Figure 6.

7.1.3 West Hawk Lake Property Geology

Figure 8 shows the general geology of the WHL Property area along with the WHL Claim outline. The principal feature is the Falcon Lake Igneous Complex (FLIC), a 5 km by 2 km elliptical shaped composite intrusion that has been emplaced near the contact between metavolcanic and meta-sedimentary rocks. These rocks form an anticlinal structure in this area. The FLIC is reported to have been emplaced as a result of at least six intrusive events with the composition of the rocks ranging from gabbroic in the outer rim to quartz monzonite in the inner core.

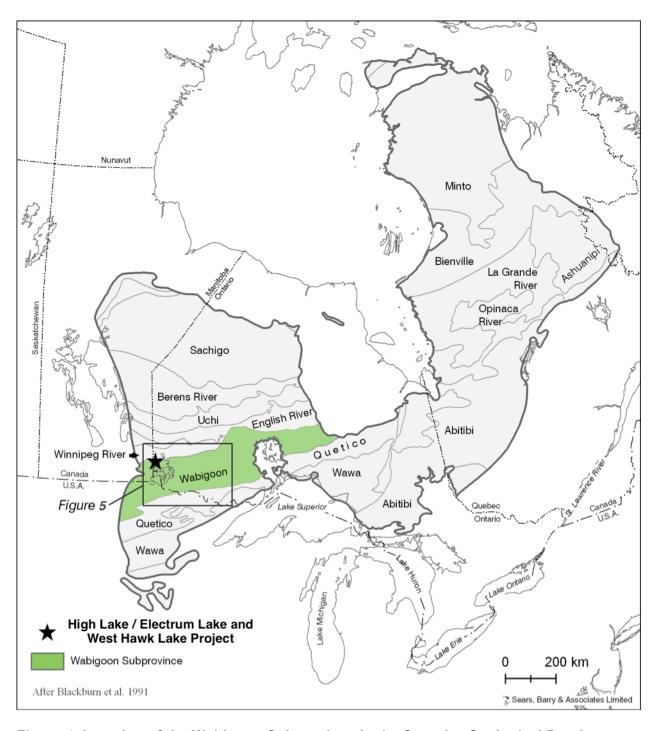


Figure 4: Location of the Wabigoon Subprovince in the Superior Geological Province

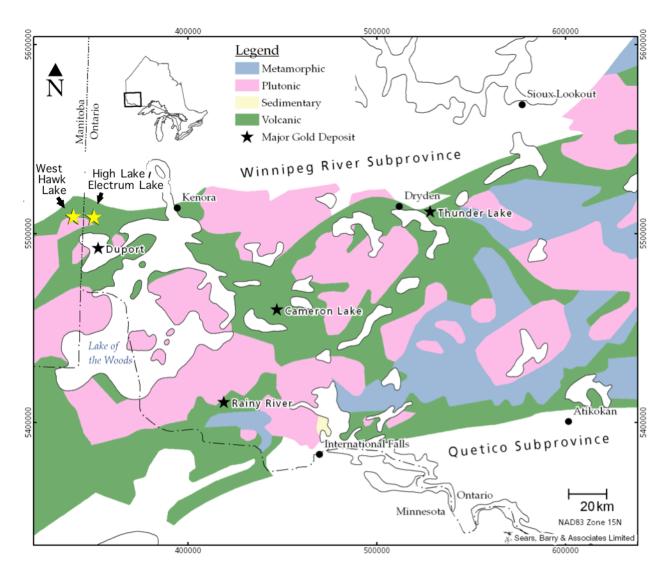


Figure 5: Map of the western part of the Wabigoon Subprovince showing greenstone belts and known major gold deposits. (based on Wheeler et al., 1997)

7.2 Mineralization

7.2.1 Mineralization West Hawk Lake Property

Two types of gold mineralization are known to occur on the WHL Mining Lease. The host rock for the first type is a concentrically banded pipe-like structure, referred to as a "breccia pipe" by most explorers. Gold occurs in siliceous bands, small quartz veinlets, and with local sericitic patches. Associated mineralization includes pyrite, galena, sphalerite, chalcopyrite and

pyrrhotite as well as minor arsenopyrite and tetrahedrite. The Sunbeam and Moonbeam are examples of this type of mineralization.

The second type of gold bearing structure consists of narrow shear zones that occur within all rock types but particularly near the contacts of the various phases of the intrusive complex. Gold is generally associated with narrow quartz veining and gashes within en-echelon lenses and wider bodies of biotite schist but it also occurs along joint surfaces within and adjacent to these shears. Common accessory minerals include pyrite, galena, sphalerite and arsenopyrite. Mineralization of this type includes the Waverly veins and the Sundog zone.

In addition to the mineralized zones discussed previously (Sunbeam, Moonbeam, Waverly and Sundog), there are numerous other mineral occurrences located within the boundaries of the WHL Property. Selected zones are shown on Figure 9 and listed in Table 8. They include the following:

Table 3 Known Prospects on the West Hawk Lake Property

Name of Zone	Туре	Description
Waverly Raise	Au	Raise installed in 1945-46 in a mineralized shear zone from a northwest cross-cut driven from the 450 level of the Waverly shaft. Size potential unknown; Raise surfaces on the north side of a swampy area that separates the Waverly and Sunbeam deposits.
Breccia Zone	Au	A breccia pipe located beneath a swamp between the Sunbeam and Moonbeam pipes (Godfrey, 1983). Pipes of this type (on the property) are known to range from 20 to 150 feet across and are thought to have excellent down dip potential.
Other Shear Zones	Au	Fingler (1988) and Davies (2011) refer to several zones that occur to the west of the Waverly veins (Letain "A", "B" & "C"). The size potential of these zones is not known and there orientation and structural controls are not well understood. These include the Moonbeam Extension, Sundog Fault and the Sunbeam Extension.
Gold Coin	Au	Davies (2011) reports "A pit approximately 2 m long was located within diorite at Grid 200N and about 065 W. Rock is poorly exposed, but apparently a shear zone with some disseminated pyrite was probed. Fingler (1991, p78-79) reported chlorite alteration and gold associated with pyrite and arseno- pyrite."

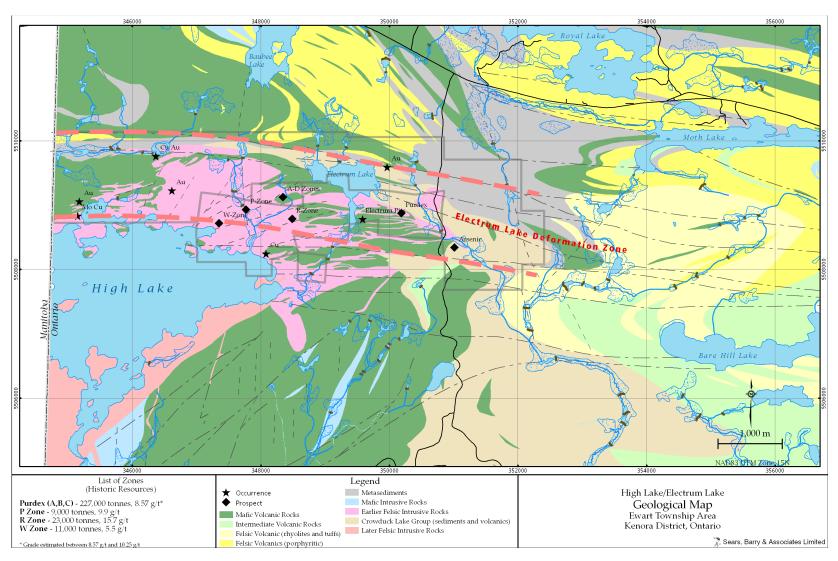


Figure 6: Geology of the High Lake/Electrum Lake Area (geology from OGS, 2006)

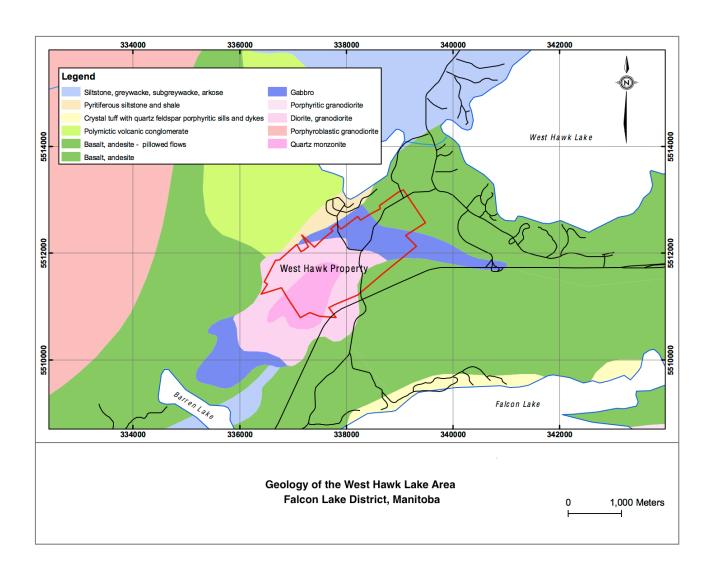


Figure 7: Geology of the West Hawk Lake Area

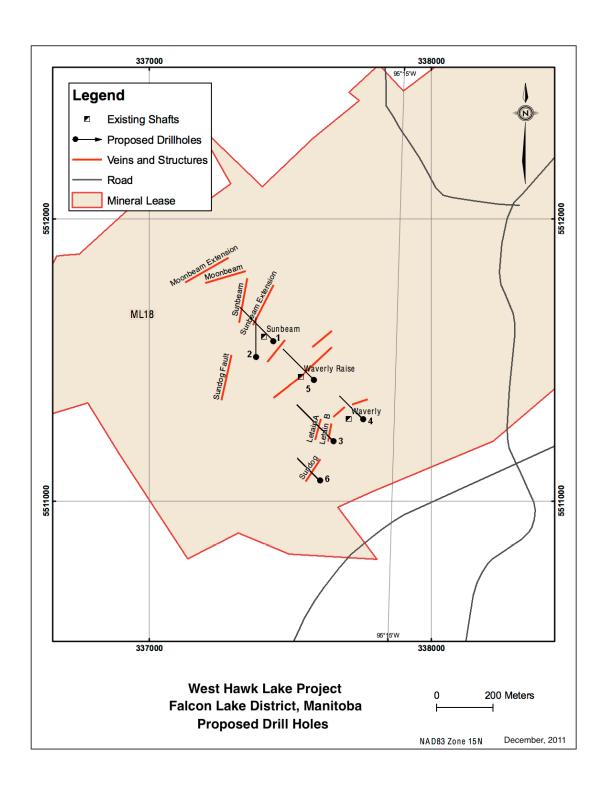


Figure 8: West Hawk Lake Gold Occurrences and Proposed Drill Holes

8.0 Deposit Types

The primary deposit types being explored for on the WHL Properties include:

1) Archean aged, structurally hosted, lode gold deposits (Hodgson, C.J. 1993). Deposits of this type range in size from small, sub-economic lenses containing 10s of thousands of tonnes to greater than 100 million tonnes of mineralized material grading from 5 to 15 g/t Au. This type of deposit is best represented by the gold deposits of the Timmins, Kirkland Lake and Red Lake mining camps.

The key features that are common in this type of deposit are a spatial association with a regional scale structural lineament, e.g. the Porcupine-Destor Fault in the Timmins area or the Kirkland Lake - Larder Lake Break in the Kirkland Lake Area as well as proximity of young intrusive rocks such as quartz porphyry and intense alteration of the host rocks (carbonate-sericite-silica). Sometimes there is an association with ultramafic intrusive rocks.

- 2) Quartz-sericite schist with Au \pm Py \pm Cpy \pm Mo; Deposits of this type are typically large tonnage and lower grade than most lode gold deposits (Poulsen, 1996). They are usually hosted within shear zones and often have an associated felsic intrusive association. The host rocks are typically sedimentary, however, they are not restricted to this rock type. One of the best examples of this type of deposit is the Hemlo Gold deposit near Marathon, Ontario which is reported to have contained 84 million tonnes at an average grade of 7.7 g/t Au (Bodycomb 2000).
- 3) Porphyry-related Cu + Au ± Mo deposits; the quartz porphyritic rocks and their contact aureoles also have potential for hosting large tonnage, bulk mineable gold mineralization associated with quartz-carbonate stockwork and vein zones. Porphyry type deposits are common in other parts of the world and are not unknown in an Archean greenstone environment (Colvine et al. 1979, 1981). There is a prospect on the High Lake/Electrum Lake Property (north of the northeast end of High Lake) that has been described as a porphyry deposit (Davies 1965). In addition, the gold mineralization associated with "breccia pipes" on the WHL Property (the Sunbeam and Moonbeam deposits) may well be related to an unexposed intrusive body that may be part of a larger porphyritic mineralizing system.

Exploration for these types of deposits include geological mapping, Induced Polarization (IP) and magnetic geophysical surveys, soil geochemical surveys and diamond drilling.

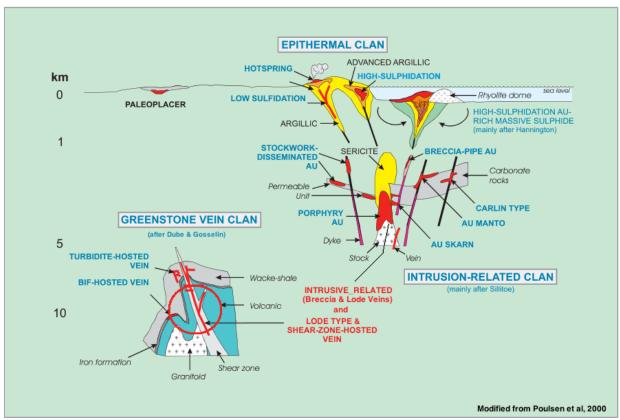


Figure 9: Depositional model for Canadian gold deposits (modified from Poulsen et al, 2000).

9.0 Exploration

9.1 General

9.1.1 West Hawk Lake Exploration Program

Between August and October of 2011, and September through December 2012 two exploration programs were completed over the center part of the WHL Property. The program was designed to locate previously identified gold occurrences and deposits as well as other potential host structures on the property and to determine if they could be detected with basic exploration techniques. The work included:

- approximately 41 km of cut grid-lines
- ground magnetic survey

- VLF-EM survey
- geological mapping
- · diamond drilling

9.1.2 Geophysical Survey

The geophysical surveys were completed by JVX Ltd, Toronto, Ontario. Data was collected using an Overhauser GMS-19 Magnetometer / VLF instrument (GEM Systems) with built in GPS station locator. In Phase one conducted in the summer of 1011 a total of 8.4 km of magnetic data and 10.6 k of VLF-EM data was collected. Data collection was not possible over low-lying, marshy areas in phase one. Phase two covered an additional area in the east section of ML-018 and a total of 21.2 km of VLF-EM and magnetic data was completed in 2012. The "Total Field" magnetic data from Phase one is presented in a contoured form as Figure 12. "Fraser Filtered" VLF-EM data from Phase one is presented as Figure 13. The results from Phase two were not available at the time of the writing of this report but will sent to the Manitoba Mining Recorder's office when available by March of 2013. Results from the Phase One geophysical program are shown in Figure 9 and 10 below.

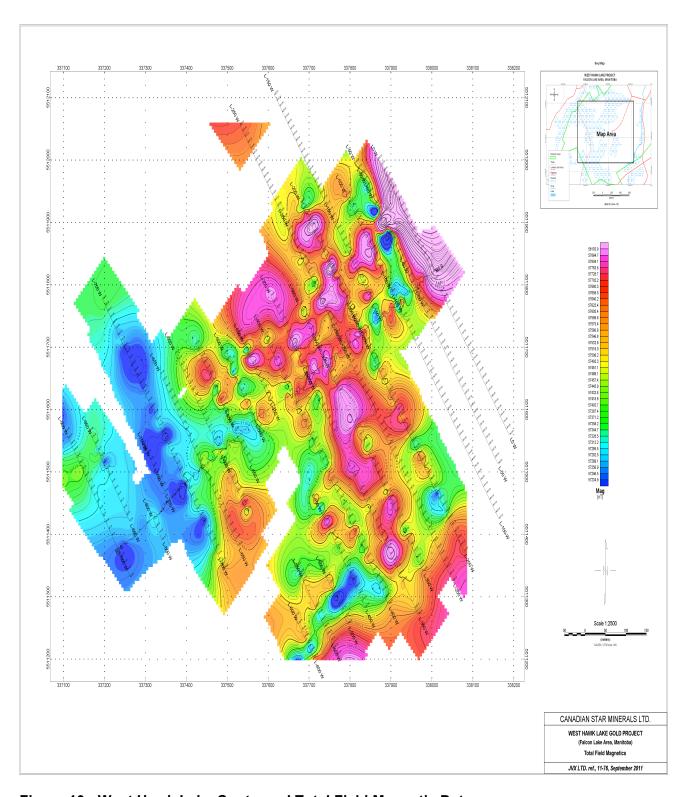
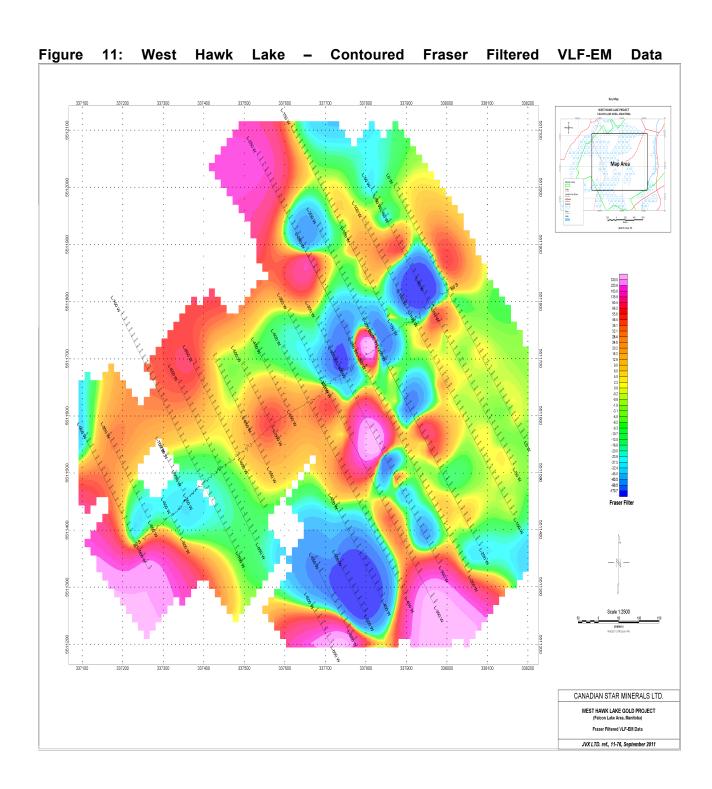



Figure 10: West Hawk Lake Contoured Total Field Magnetic Data

9.1.3 Geological Mapping

The geological mapping was carried out by John C. Davies, PhD, of Saskatoon, Saskatchewan with the assistance of field geologists Lori Stewart M.Sc., and Bret Duncan B.Sc. both recent graduates of the University of Manitoba and familiar with area. This area surrounding West Hawk Lake is the base of the University of Manitoba's geological field school. This work utilized the cut grid for control augmented by the use of a GPS receiver. A reconnaissance scale geological map of the area covered is presented as Figure 14. The mapping confirms a circular, multiphased intrusive complex, centered by monzodiorite and flanked by granodiorite and then by diorite. During the mapping program, a total of 18 rock samples were collected and submitted to Accurassay Laboratory in Thunder Bay, Ontario where they were analysed for gold by Fire Assay methods and for 33 elements by the ICP method. The samples descriptions accompanied by the Gold values are shown in Appendix III and the locations are plotted on Figure 14. The sampling completed is of a reconnaissance nature consisting of grab samples designed to assist in the location of historic gold prospects and to confirm the potential for gold mineralization on the WHL Property. All samples were from surface material and may or may not be representative of the material sampled. The sample density is limited by the bedrock exposure in the area as well as the by the small area of the property that was covered by the mapping program and therefore the sampling represents only a minor fraction of the WHL Property.

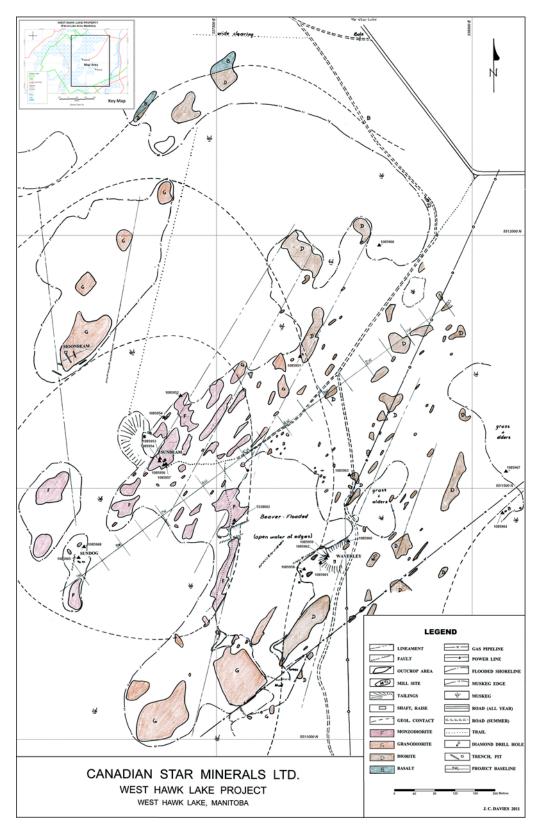


Figure 12: Canadian Star 2011 Geology Map of the WHL Property

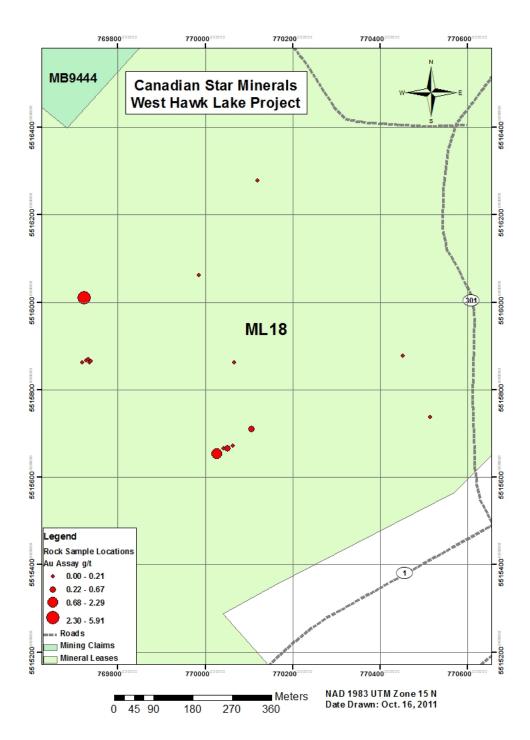


Figure 13: West Hawk Lake Rock Sample Locations 2011

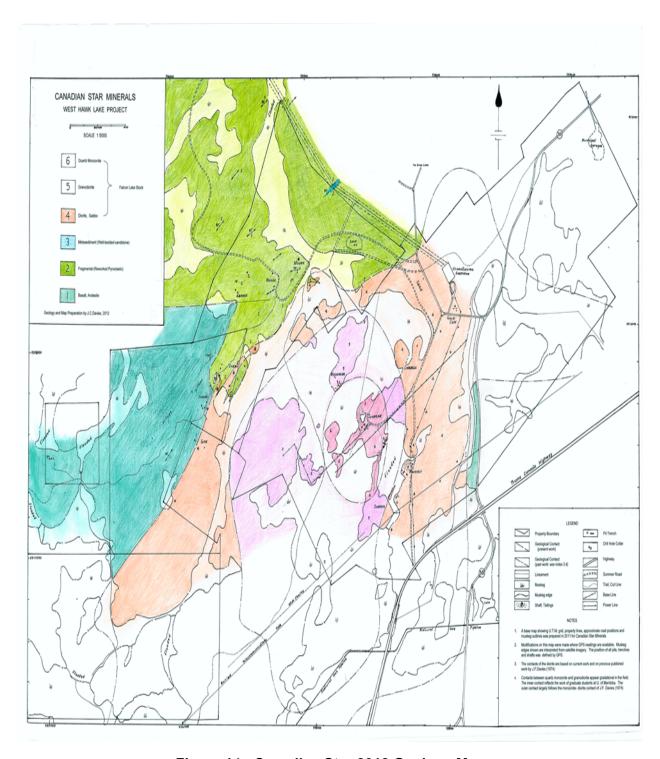


Figure 14: Canadian Star 2012 Geology Map

9.2 Discussion of Results

9.2.1 West Hawk Lake Property Geophysical Results

The results from ground magnetic and VLF-EM surveys conducted on the property show that data from these types of geophysical surveys may be useful if complete coverage was available. The surveys were limited to the land portion of the property. Fill-in data, collected in winter, from the wet, swampy parts of the property is required to properly evaluate the effectiveness of this type of survey. A second VLF-EM 22 km survey was conducted on the eastern half of the property in November and December 2012.

9.2.2 West Hawk Lake Property Geology

Geological mapping of the main part of the WHL Property has provided a very good, basic understanding of the geological setting of nature of the known gold mineralization. Although limited by the lack of information in swampy areas, the results from the geological mapping indicate that gold is associated with silicification in breccia structures and shear zones and that detailed, systematic sampling and drill testing is required to properly sample the known zones. The mapping identified a number of old trenches and topographic lineaments that may have potential for hosting undiscovered gold mineralization. Routine rock samples collected while mapping demonstrate anomalous gold values in bedrock samples.

The Phase One 2011 program established a grid in the central part of the stock, in re-examining the geology of that area and in locating evidence of prospecting within that area. The 2012 program, which was hampered by an early snowfall of 5 to 10 cm, was on the drilling of recommended targets, on lengthening the grid, especially to the east where additional geophysical work was carried out, and on geological mapping of the area immediately north and northwest of the stock where much prospecting had previously taken place. The results of the 2011 and 2012 work are compiled on the accompanying maps Figure 12 and 14 at a scale of 1:5000.

All of the pits located in the area examined lie within 300 metres of the diorite contact. The host rock of most of these is a rusty fragmental rock which Jim Davies called basic agglomerate, though admitting some sedimentary features are evident. On a horizontal surface many clasts

are strongly deformed, with a length to width ratio of up to 10 to 1. On the near-vertical foliation planes study is more difficult because of staining and lichen, but lineation is either weak or absent: one clast exposed in a broken slab had a thickness of about 2 cm but on the foliation plane was almost perfectly circular and about 15cm in diameter. One smaller clast of fine-grained granodiorite showed a weathering profile about 6mm deep, and it is clear from there that many clasts were subject to a long period of reworking and weathering. However, almost all clasts are very fine grained, dark grey to greenish-grey in color, and presumably of volcanic origin. A few quartz pebbles were noted, but not a single medium, coarse or felsic clast was seen.

The 'agglomerate' outcrops over an oblong area of about 3.5km², with a width (at right angles to foliation) of about 1500m. However Davies projected a syncline-anticline pair through this so that a maximum post-deformation thickness of 750m would be present. Pre-deformation thickness could have been much greater. The southern 300m are characterized by much fine pyrite or pyrrhotite so that broken surfaces are typically rusty.

Clastic sediments predominate in the north half of Star Lake, to the northeast. That there is interlayering with the coarse clastic rocks is demonstrated by a 25m thickness of thin-bedded fine-grained siliceous sediment within the coarse fragmental which might, more descriptively, be called volcanic conglomerate. This is located at the southwest end of a large outcrop where the main power line changes direction. Bedding in the sediment is parallel to the foliation in the conglomerate.

9.2.3 Historic Workings

A shaft was sunk on the Moore claim in the host volcanic conglomerate, and gold was reported. The site is topographically low, and no structural feature of interest was seen in the adjacent outcrop area. Some mill feed may have been derived from a 11m x 3m pit lying 100m to the southwest of the shaft: the pit is water filled, but a controlling structural feature could not be seen for any mineralization that may have been removed.

A number of pits were sunk in the conglomerate on the former Moore, Narwak and Sheba properties. Little quartz was seen in place, but adjacent dumps contain some quartz with minor pyrite. Structural features, apart from the pervasive foliation were rarely seen. Pits were also sunk in basalt in the southern part of the Sheba property, and at the contact of basalt with diorite

on both the Sheba and Gem properties. Quartz was found on dumps at all but one of these pits. Grab samples were taken from each pit.

A large cut and adit were sunk at the MJT occurrence near the western extremity of the Canadian Star option, and gold was reportedly recovered in a private operation. This lies totally within basalt. The workings were not examined this October, and are largely under water due to a beaver dam which has flooded the adjacent low lands.

9.2.4 Conclusions

The volcanic conglomerate is typically strongly foliated, with extreme flattening of pebbles within the foliation plane. The underlying basalt, in places showing elongation of pillows parallel to foliation direction, appears to be less strongly deformed and perhaps has more potential for brittle faulting. While linear features evident in satellite imagery may reflect faults, there is little evidence of significant faulting in outcrop.

It is clear that the Falcon Lake Stock was emplaced after, or in the late stages of, regional deformation, and that gold was mobilized in fractures in the stock. Rocks near the northwest end of the stock, especially in the sulphide-rich volcanic conglomerate, offered much potential for hosting late-stage silica mobilization and accompanying gold in rock fractures. The present work indicates quartz veining is not widespread and, where present, is small and discontinuous. The potential for the rocks marginal to the stock is to locate a fault zone along which mineralization has taken place.

9.2.5 Recommendations

The possibility of some undiscovered structural feature at the northwest end of the Falcon Lake Stock should not be discounted. Geophysical work should be carried out, particularly in the area of the former Moore and Sheba claims, and within 300 metres of the stock.

Follow-up prospecting should be undertaken on any pit that shows encouraging gold values in samples taken from the pits during the present work.

The MJT occurrence should be examined for evidence of a controlling structure in the western part of the claim group.

10.0 Drilling

10.1 Drilling West Hawk Lake Property

An eight hole 1,000 metre diamond drilling program was completed between October 10 and November 24, 2012 on the Manitoba Mineral Lease ML-018, West Hawk Lake area, Manitoba. This drill program followed the program outlined in the NI43-101 report completed by Sears Barry and associates in February 2012. The program was undertaken to test the historical mineralized zones identified within the aforementioned report. The drill targets were shallow and less than 155 meters depth and designed to test the historical results of past exploration programs.

Cabo Drilling Ltd., Kirkland Lake, Ontario were contracted by Canadian Star to conduct the company's diamond drilling program on the West Hawk Lake property. Dr. John Davies and Bret Duncan B.Sc. oversaw the logging and sampling program. The author supervised the diamond drill program and coordinated the logistics for Canadian Star.

10.2 Diamond Drilling Results

Two hundred sixty-five core samples were taken from the eight holes drilled on the West Hawk property. Four of the eight holes intersected gold mineralization greater than 3g/t. A chart presenting some of the highlights of the 2012 drilling campaign is presented in Table 4. The most significant result originated from hole CSM-WH-12-05 from 57.65 to 59.65 which averaged 31.6 g/t over two metres. The host rock was a sheared diorite consistent with the historical evidence of past drill programs. Several flecks of Visible Gold along with arsenopyrite, sphalerite, pyrrhotite and pyrite were evident in the core samples. The feldspar were typically sericitized with blue grey silicification. The silicification generally occurred in bands typically not greater than 5 cm in width. This style of mineralization was also present in CSM-WH-12-06, CSM-WH-12-07, CSM-WH-12-08 which were drilled in the area of the Waverly shaft, raise and Sundog zones. Holes 1A and 2 were drilled in the Sunbeam Zone which has been described as gold mineralization associated with breccia pipes. The drill core contained sheared porphyritic sections in which the gold concentration levels where at the higher levels in excess of 1 g/t. Previous exploration drill programs by White Shell Ventures and Goldbeam Resources (the

Sunbeam and Moonbeam deposits) attributed these breccia pipes being related to an unexposed intrusive body that may be part of a larger porphyritic mineralizing system. The current drilling confirmed the historical results presented in past reports from Whiteshell Ventures in the 1970's and Goldbeam Resources in the 1980's.

Upon completion of the drilling the core was transported off-site to avoid vandalism or other damage. The drill core is being stored in a secure location

The drill core logs and sections are presented in Appendix IV.

Table 4: West Hawk Property Diamond Drill >2 g/t Au Mineralized Intervals

Hole	Gold	From	То	Width	Rock Type	Comments
No.	(ppm)	(m)	(m)	(m)		
CSM-	2.22	55.85	56.85	1.0	Highly	Silicified Chl/Ep alt 1-2cm
WH-12-					Sheared	Qtz veinlets w Py, Cpy,Po,
01A					Diorite	AsPy mineralization
CSM-	26	57.65	58.65	1.0	Highly	Silicified Zone 2-5 %
WH-12-					Sheared	Sulphides w Qtz veining
05					Diorite	Py,Cpy,Po,AsPy,VG
CSM-	37.2	58.65	59.65	1.0	Highly	Silicified Zone 2-5 %
WH-12-					Sheared	Sulphides w Qtz veining
05					Diorite	Py,Cpy,Po,AsPy,VG
CSM-	3.12	21	22	1.0	Mod	Silicification w/ 1-3cm qtz
WH-					Sheared	veinlets CaCo3 alt
12-06					Diorite	Py,Po
CSM-	25.1	55.8	56.8	1.0	Sheared	CaCo3 alt Silicified w qtz
WH-					Monzonite/	veinlets Py,Po,AsPy,Mo
12-07					Qtz Diorite	W VG
CSM-	7.14	101.6	102.55	1.0	Mod	Qtz CaCo3 veining
WH-					Sheared	Py,Cpy,Po,As
12-08					Diorite	

Photo 2: 2012 West Hawk Lake Core From Drill Hole CSM-WH-12-07
Waverly Raise Area

Hole CSM-WH-12-07 @ 56.5m. Section from 55.8 – 56.8 CaCo3 alt Silicified w qtz veinlets Py,Po,AsPy,Mo and Visible Gold. Notice the shear banding in the lower section of core Assay Results were 25.1 g/t over one metre.

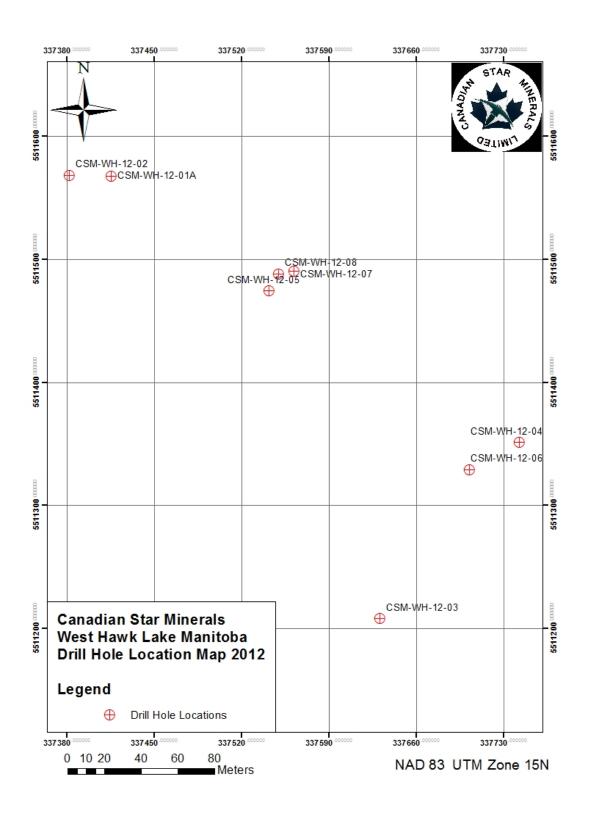


Figure 15: 2012 West Hawk Lake Drill Hole Locations

11.0 Sampling Methodology

11.1 West Hawk Lake Property

Canadian Star Minerals QA/QC procedures follow standard industry practices. Sealed core boxes are transported once daily from the drill rig to the core logging facility by qualified drill contractor personnel. Core is logged and prepared for sampling in a secure facility. Sample intervals are selected according to geologic contacts, visible mineralization and alteration. Drill core is bisected by an electric powered diamond blade rock saw. Sampled core is placed in sample bags, sealed and shipped to an assay lab that follows ISO 9000 series of Quality Management Standards. All drill core samples were analyzed for gold and other trace elements at AGAT Laboratories by standard industry procedures. These procedures include gold by fire assay-ICP-OES finish (202062) and silver aqua regia digest-AAS finish (201025). The Multi-element analysis is done by a lithium borate fusion with XRF (201676).

Blank and certified standard samples are routinely submitted with all sample batches sent to the lab for assay. In addition, replicates, duplicates and field duplicates are routinely included in sample batches. Samples with visible gold are analyzed with procedures designed to reduce the variability of the sample results. And finally, samples are routinely sent to other labs for additional checks.

Rock samples were collected from the WHL Property as part of a geological mapping program and were therefore considered to be of reconnaissance nature. All sample preparation was completed by the laboratory. Rock samples were shipped to the Accurassay laboratory in Thunder Bay, Ontario. Accurassay is an independent, accredited analytical laboratory (ISO 17025 of the Standards Council of Canada).

Nineteen samples were submitted and analyzed. These included one Standard Reference sample for the purpose of analytical quality assurance. The assayed standard returned a value within acceptable limits and is therefore considered to reflect reasonable confidence in the analytical results of this batch of samples.

12.0 Data Verification

12.1 West Hawk Lake Property Data Verification

The West Hawk Property was visited by Seymour Sears QP on October 03 and 04, 2011 on behalf of Canadian Star in preparation for the NI 43-101 Technical Report for the WHL project. The visit focused on the Waverly Shaft, Waverly Raise and the Sunbeam Prospects. Preliminary mapping of the Waverly Shaft area and the Sunbeam Shaft area was completed and 12 composite grab samples were collected. The rock samples were submitted to AGAT Laboratories in Sudbury, Ontario for analysis. AGAT Laboratory is an independent, accredited analytical laboratory (ISO 9001; ISO/IEC 17025 of SCC).

The sample descriptions are shown in Appendix II. Locations for all but one of these samples (#5338602) are shown on Figures 14 and 15. The sample location for # 5338602 is shown on Figure 14.

These samples were collected to verify the presence of gold mineralization on the WHL Property and may or may not reflect the actual grade of any deposits on the property. Most of the samples consisted of random grab samples, each from an area of bedrock that was approximately 1 metre square. Two of the samples were taken from a waste dump at the Waverly Shaft area (5338597 and 5338598); these were taken from material scoped from 30 cm holes dug into the pile.

Three of the numerous gold prospects reported by previous workers were visited by Mr. Sears. These appear to be well described and were easily located. The assay results from grab sampling confirmed that gold mineralization exists on the Property.

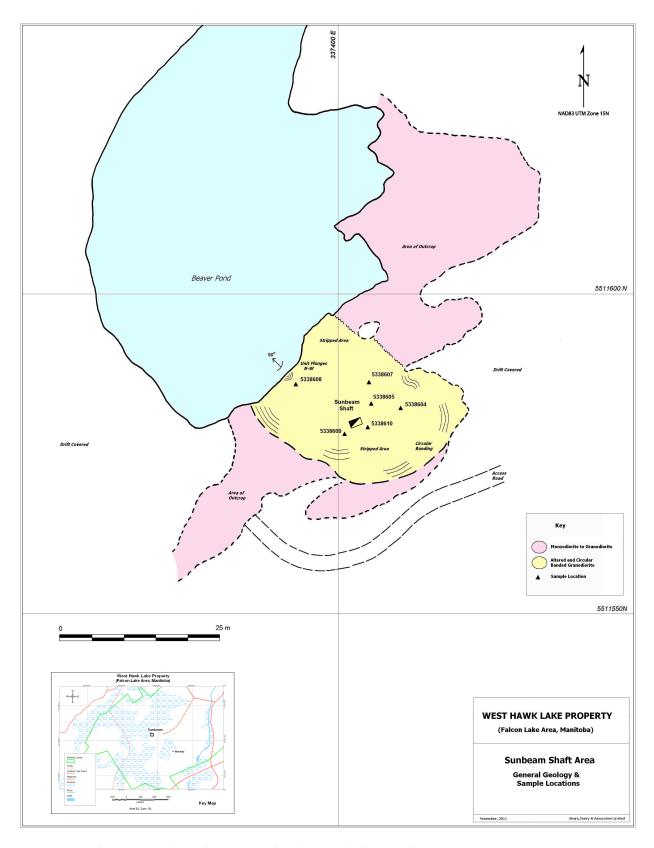


Figure 16: Geology of the Sunbeam Shaft and S. Sears' Sample Locations

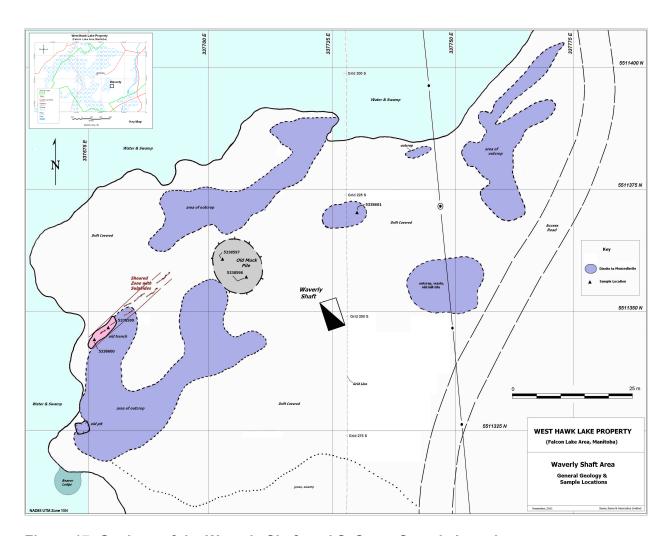


Figure 17: Geology of the Waverly Shaft and S. Sears Sample Locations

12.2 Adequacy of Data

There is a tremendous amount of historic data available for the HLEL and WHL Properties. The exploration program carried out by Canadian Star has been successful in confirming the existence of gold bearing zones on the properties and substantiates the promising exploration potential of the WHL project.

13.0 Adjacent Properties

There are several properties located nearby hosting mineralization in a similar geological environment as that which hosts the West Hawk Lake prospects. These include the Evanlode Molybdenite Zone, the Duport and Mikado Au Deposits and the HLEL gold Au Prospects. Although the geological environment is similar, the writer has not been able to verify this information and it is therefore not necessarily indicative of mineralization on the West Hawk Lake property.

The Evanlode Molybdenite Zone consists of Mo/Au mineralization hosted within a sheared porphyry environment. This zone is located approximately 400 metres southeast of claim # K32574 near the west end of the High Lake Property. This prospect is reported in a 1962 company prospectus to contain 126,000 tons (114,000 tonnes) at a grade of 0.68% MoS2 (Brown 1962). This estimate predates and is noncompliant with NI 43-101 and is presented here for reference only.

The Duport Au Deposit is a lode gold deposit that is reported to contain 424,000 tonnes assaying 13.4 g/t Au. These resources were calculated in 2005 and are NI 43-101 compliant (Clow 2006). The Mikado Au Prospect, also a lode gold deposit, is located in the same general area as the Duport Deposit. This Property, also referred to as the Cedar Island, Cedar or the Kenora Prospectors and Miners prospect is reported to have a resource of 1,438,000 tonnes grading 6.76 g/t Au (Giroux Consultants Ltd, 2003 & Leonard, 2010). Both of these properties are located approximately 25 km southeast of the WHL project.

14.0 Interpretation and Conclusions

The West Hawk Property is host to numerous gold occurrences, four of which have been tested by underground development and/or diamond drilling by previous operators. The four historical deposits have seen some preliminary re-sampling and definition by diamond drilling by Canadian Star Minerals in 2011 and 2012. The results generated from the surface sampling and diamond drilling campaign indicate that additional gold mineralization exists on this property. The known gold deposits on the WHL Property have excellent potential to be expanded by future definition diamond drilling.

15.0 Recommendations

15.1 West Hawk Property Recommendations

The first phase of work completed by Canadian Star Minerals in the 2011 and 2012 exploration programs the West Hawk Property confirmed and enhanced the grade of gold mineralization on several of the mineralized zones. The work included the preparation of an accurate basemap to tieing-in all known prospects, systematic bedrock sampling of known prospects and diamond drill testing of several of the better defined, known gold deposits. Future work should include approximately 10 – 15 km of Induced Polarization (IP) survey completed over the existing grid for the purpose of detecting areas of disseminated sulphides that appear to be related to the known gold bearing zones. The first phase diamond drilling program identified the gold bearing zones and gave evidence to wide spread gold mineralization with five of the eight holes encountering gold values in excess of 2.2g/t. Two of the eight holes encountered gold values in excess of 25 g/t. Due to the success of the first phase of diamond drilling a follow-up second phase is recommended. If the results from this program continue to be encouraging, a major drilling program will be required for the West Hawk Project. An estimate of the cost of this Phase II program is shown in Table 5.

Table 5 Phase II Budget

PHASE II														
Description	Unit V	CDN\$	CDN\$											
West Hawk Lake														
Diamond Drilling (30 holes)	3,000 metres	150	450,000											
Core Logging, Sampling (1 geo, 1 assistant)	100 crew-days	900	90,000											
Assays and analysis, core	1,000 samples	45	45,000											
Travel: 1 vehicle, fuel (200 vehicle days)	100 days	120	12,000											
Accommodation, meals (2 people average)	100 days	200	20,000											
Consumables, communication, software	4 months	5,000	20,000											
Equipment rental, miscellaneous, core storage	4 months	5,000	20,000											
Supervision, QA/QC, Reporting	approximate	@ 20%	230,000											
Contingency and Overhead	approximate	10%	138,000											
Total – West Hawk Lake Property			\$854,100	\$854,100										
TOTAL – F	PHASE II			\$854,100										

15.2 Phase III West Hawk Property Recommendations

If Phase II work programs are successful in verifying the existence and potential of currently known targets on the WHL Properties, a third phase program consisting primarily of definition diamond drilling on the most favourable targets will be required. These work programs should be sufficient to verify the mineralization outlined by previous explorers on the Properties and provide the information needed to make a decision regarding an advanced exploration and development program.

16.0 Project Expenditures

The costs associated with the West Hawk project are included in the attached spreadsheets. As part of the requirements for the renewal of Manitoba mineral lease ML-018 \$398,750 Can. was to have been spent on the project prior to December 31, 2012. In accordance with these requirements the company Canadian Star Minerals has spent \$94,613.92 Can. on the project in 2011. The 2012 exploration program added an additional \$290,280.07 Can. to the overall expenditures. This amount in addition to the approximately \$115,000.00 previously spent by Queenston Mining Inc. on airborne geophysics brings the total amount to \$499,893.99 Can. for the project.

Canadian Star Minerals Ltd.

Westhawk Lake Project Expense List

(August – October 2011)

Field Supplies	\$ 236.45
Line Cutting	\$ 20,187.50
Assaying	\$ 1,400.00
Geophysics	\$ 10,752.50
Labour	\$ 2,100.00
Geology	\$ 16,200.00
Acommodation & Meals	\$ 4,600.00
Fuel	\$ 1,457.60
Equipment Rental	\$ 4,798.40
Mileage	\$ 424.00
Outside Consultants Zone 14 JVX	\$ 12,025.07
Phone/Software	\$ 150.00
aneousMiscell	\$ 215.25
Contingency & Overhead @10%	\$ 7,454.73
Supervision OA/QC @ 5%	\$ 4,088.28
PST Manitoba	\$ 416.26
GST Manitoba	\$ 297.28
HST Ontario	\$ 7810.11
TOTAL	\$ 94,613.92

Canadian Star Minerals Ltd.

Westhawk Lake Project Expense List

(October 2011- December 2012)

Field Supplies	\$ 387.35
Line Cutting	\$ 25,082.50
Assaying	\$ 10,464.39
Core Sampling	\$ 2,250.00
Geophysics	\$ 19,082.50
Labour	\$ 5,966.25
Geology	\$ 29,895.05
Diamond Drilling	\$ 112,477.32
Acommodation & Meals	\$ 6161.08
Fuel	\$ 3335.92
Rental Equipment	\$ 12,237.50
Mileage	\$ 621.60
Field Equipment	\$ 1717.67
Phone/Software	\$ 200.00
Miscellaneous	\$ 395.47
Contingency & Overhead @10%	\$ 22,836.10
Supervision OA/QC @ 5%	\$ 11,418.05
PST Manitoba	\$ 7,552.90
GST Manitoba	\$ 5,813.13
HST Ontario	\$ 11,987.71
TOTAL	\$ \$290,280.07

17.0 References

- Barry, J. M., 2009: Report on an MMI Survey, High Lake Electrum Lake, Indian Bay Map Area, Kenora Mining Division for International Millennium Minerals Inc.
- Blackburn, C.E. and Janes, D.A., 1893: Gold Deposits in Northwestern Ontario, in The Geology of Gold in Ontario, OGS Miscallenous Paper 110; Edited by A.C. Colvine.
- Blackburn, C.E., Johns, G.W., Ayer, J. and Davis, D.W., 1991: Wabigoon Subprovince in Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p 303-381.
- Bodycomb, Venetia, 2000: "The Hemlo Gold Deposit, Northern Ontario, Canada." McGill University.
- Brown, B.B., 1962: Report on Evanlode Mines Limited, Ewart Township, Ontario; included in the Company Prospectus, 1962.
- Burns, J.G., 2005: Technical Report on the Electrum Lake Property, Indian Bay Map Area, Ontario; prepared for International Millennium Mining Corp. (NI 43-101 Report).
- Chastko, L. C. 1986: A Summary of 1985-86 Exploration and Development and a Proposal for Continued Exploration of the Whiteshell Mineral Claims; a summary report for Goldbeam Resources Ltd.
- Clow, G.G., Valiant, W.W., 2006: Technical Report on Duport Project, Northwestern Ontario, Canada; prepared for Halo Resources Ltd. (Ni 43-101 Report) Rosco Postle Associates Inc.
- Colvine, A.C., Fyon, J.A., Heather, K.B., Marmont, S, Smith, P.M. and Troop, D.G., 1988: Archean Lode Gold Deposits in Ontario, Ontario Geological Survey, Miscellaneous Paper 139.
- Colvine, A.C. and Marmont S., 1981: Early Precambrian Porphyry Deposits; p.242-247 in Summary of Field Work, 1981, Ontario Geological Survey, Miscellaneous Paper 100, 255p.
- Colvine, A.C. and Sutherland, I.G., 1979: Early Precambrian Porphyry Deposits: p. 230–243 in Summary of Field Work, 1979 by the Ontario Geological Survey; OGS Miscellaneous Paper 90.
- Davies, J.C., 1965: Geology of High Lake Rush Bay Area, District of Kenora; Ontario Department of Mines, Geological Report No. 41; Including Maps No 2068 and 2069, Scale 1"=1/2 mile.
- Davies, J.C. and Smith, P.M., 1988: The Geological Setting of Gold Occurrences in the Lake of the Woods Area; Ontario Geological Survey, Open File Report 5695.
- Davies, J.F., 1954: Geology of the West Hawk Lake Falcon Lake Area, Manitoba Mines Branch Publication No 53-4 accompanied by Map 53-4 (Scale 1:12,000).
- Dube, B. and Gosselin, P., 2007: Greenstone-Hosted Quartz-Carbonate Vein Deposits (Orogenic Mesothermal, Lode Gold, Shear Zone-Related Quartz Carbonate or Gold-Only Deposits).
- Environment Canada, 2009: Climate Normals and Averages. Retreived on December 01, 2009 from http://www.climate.weatheroffice.ec.gc.ca/

- Fingler, J.L., 1991: Precious metal mineralization related to the Falcon Lake Intrusive Complex, West-Falcon Lake areas. Geological Survey of Canada Report.
- Franklin, J.M., 1996: Volcanic Associated Massive Sulphide Base Metals; in Geology of Canadian Mineral Deposit Types, Geological Survey of Canada, Geology of Canada #8, p 158-183.
- Geological Survey of Canada 1967: Map 1191G, Waugh; Geological Survey of Canada, aeromagnetic map, scale 1:63 360.
 - Map 1192G, Caddy Lake; Geological Survey of Canada aeromagnetic map, scale 1:63 360.
- Geological Survey of Canada 1987: Map 52E, Kenora, (Bedrock Geology Compilation Series); Geological Survey of Canada, geological map, scale 1: 250 000.
- Giroux Associates Ltd., 2003: A Resource Estimate on the KPM Shoal Lake Project, for Amador Gold Corp; A Technical Report Filed on SEDAR by Amador Gold.
- Giroux, G.H., and Leonard, K.W., 2010: A Resource Update on the KPM Shoal Lake Project, for Everton Resources, March 1, 2010 with amended version on July 16, 2010; A Technical Report Filed on SEDAR by Everton Resources.
- Godfrey, J. D., P. Geo., 1983: Geology and Mineral Occurrences of the Whiteshell Mineral Calims, Star Lake, Manitoba; a consulting report for Goldbeam Resources Ltd.
- Hodgson, C.J., 1993: Mesothermal Lode-gold Deposits; in Mineral Deposit Modelling, Geological Association of Canada Special Paper 40, p 635-678.
- Poulsen, K.H., 1996: Lode Gold, in Geology of Canadian Mineral Deposit Types, Geological Survey of Canada, Geology of Canada Series No. 8, p 323-328.
- Poulsen, K.H., Robert, F. and Dube, B., 2000: Geological Classification of Canadian Gold Deposits; GSC Bulletin 540, 106p.
- Queenston Resources Website; accessed on May 04, 2010: Other Properties Section in Reference to West Hawk Property: http://www.queenston.ca
- Robert, F., 1996: Quartz Carbonate Vein Gold; in Geology of Canadian Mineral Deposit Types, Geological Survey of Canada, Geology of Canada Series No. 8, p 350-366.
- Sears S. M., 2011: NI 43-101 Technical Report, High Lake Electrum Lake Kenora Mining Division and West Hawk Lake, Falcon Lake Area, Manitoba for Canadian Star Minerals Limited.
- Sears, S.M., 2006: Technical Report on the Alcock-High Lake Property, Kenora Mining District, Ontario; prepared for International Millennium Mining Corp. (NI 43-101 Report).
- Springer, G.D. 1952: Map 50-6, Rennie-West Hawk Lake area; 1:63,360 scale, geological map accompanying Manitoba Mines Branch, Report 50-6.
- Thompson, Jas.E, 1937a: Geology of the Northcentral Part of the Lake of the Woods; Ontario Department of Mines, Vol XLV, 1936 part 3, pp 1-33.
 - 1937b: Gold Deposits on Shoal Lake (west), Ontario Department of Mines, Vol XLV, 1936, part 3, pp44-53.
- Tilsley, J., 1982: Report of Activities, Electrum Lake Group, Assessment Report for Sherritt-Gordon Mines Ltd, MNDM Assessment Files, Kenora, Ontario.

Trowell, N.F., Blackburn, C.E. and Edwards, G.R., 1980: Preliminary Synthesis of the Savant Lake-Crow Lake Metavolcanic Metasedimentary Belt, Northwestern Ontario and its Bearing upon Mineral Exploration; Ontario Geological Survey, Miscellaneous Paper 89.

18.0 Certificate of Qualifications

I, John C. Davies, reside at 411 Garrison Crescent, Saskatoon, SK S7H 2Z9, am retired but have:

A PhD in geology (1966) Manitoba

Previous membership in the Geological Association of Canada, the Society of Economic Geologists, and the Society of Professional Engineers (Saskatchewan)

Served as Resident Geologist and Field Geologist for the Ontario Geological Survey (1960-75) with about 1500 km² of published geological maps.

Served with CIDA in Ethiopia (1972-74) and Botswana (1975-77)

Worked as Senior Economic Geologist with Saskatchewan Mining Development Corporation (1977-83)

Taught as a sessional lecturer at the University of Saskatchewan and Saskatchewan Indian Federated College.

John C. Davies

John C. Davies December 28, 2012

I, Chris North, resident of 129 Midland Avenue, Scarborough, Ontario hereby certify that:

- I am a graduate of Lake Superior State University, Sault Ste. Marie, Michigan, U.S.A receiving a Master's in Business Administration in 1988 and a Bachelor of Science Degree in Geology in 1986
- I am a graduate of Sault College of Applied Arts and Technology receiving a Geological Engineering Technology diploma in 1983
- 1 have practiced my profession for 23 years, managing and supervising many exploration and development programs.
- 4) During the period July 2011, through October 2011 and 10 of 2010 and September 2012 through December 2012 have worked at the property.
- 5) I have received no compensation for this report other than the normal consulting fees.
- This report is based upon field work completed by myself and from data obtained from various geological reports and other published material.

Dated at Scarborough, Ontario, Canada this 26th day of February 2013.

Chris D. North

Chris D North

19.0 Date and Signature Page

"West Hawk Lake Property, Falcon Lake Area, Manitoba, Canada; 2011-2012 Exploration Assessment Report for Phase One Program of the Manitoba Mineral Lease ML-018" with an effective date of February 27, 2013 was prepared and signed by the following author:

Chris D. North

Chris D. North, BSc., MBA President and CEO, Canadian Star Minerals Ltd.

Dated February 27, 2013

APPENDIX I

ABBREVIATIONS AND SYMBOLS

Abbreviations and Symbols

Appleviations and Cyn	Abbreviation /
Description	Symbol
above mean sea level	amsl
arsenic	As
atomic absorption	AA
billion(s) years	Ga
Cabo Mining Enterprises Corp.	Cabo
Canadian dollar	CDN\$
Canadian National Instrument 43-101	NI 43-101
Certified Standard Reference Material	CSRM
chalcopyrite	Сру
degree(s)	o
degree(s) Celsius	°C
diamond drill hole	DDH
dollar (Canadian)	\$
geographic information system	GIS
Geotronics Consulting Inc.	Geotronics
Global Positioning System	GPS
gold	Au
gram(s)	g
gram(s) per tonne	g/t
hectare(s)	ha
High Lake Granodiorite Stock	HLGS
High Lake/Electrum Lake Property	HLEL Property
Induced Polarization	IP
Inductively Coupled Plasma	ICP
International Millennium Mining Corp.	IMMC
Kam and Ronson Media Group Inc.	Kam and Ronson
kilometre(s)	km
lead	Pb
less than	<
metre(s)	m
millimetre(s)	mm
million year(s)	Ма
million(s)	M
Minister of Northern Development, Mines and Forestry	MNDMF
mobile metal ion	MMI

Abbreviations and Symbols

Description	Abbreviation / Symbol
molybdenite	MoS2
molybdenum	Мо
net smelter return	NSR
number	#
Troy ounces per ton	oz/ton
parts per billion	ppb
parts per million	ppm
percent	%
pyrite	Ру
Qualified Person	QP
Quality Assurance /Quality Control	QA/QC
quartz-feldspar porphry	QFP
Sears, Barry & Associates Limited	SBA
silver	Ag
tonne(s)	t
Trans Canada Pipeline Limited	TCPL
Universal Transverse Mercator	UTM
West Hawk Lake Property	WHL Property
World Geodetic System 1984	WGS 84
zinc	Zn

APPENDIX II

Check Sample Descriptions and Assay Results

	s	. Sears - \	West Hav	vk Lake Sampling October 05, 2011
Sample #	Easting	Northing	Au (g/t)	Description
				Muck Pile - Waverly shaft area NW side, grabs from 30 cm
E5338597	337703	5511363	3.44	hole
				Muck Pile - Waverly shaft area; SE side, grabs from 30 cm
E5338598	337707	5511356	0.41	hole
E5338599	337678	5511347	1.25	Waverly shaft old trench; sheared diorite; 3-5% Py; (east side)
E5338600	337675	5511346	0.59	Waverly shaft old trench; sheared diorite; 3-5% Py; (west side)
E5338601	337730	337730 5511369 1.0		Waverly shaft area; bedrock, mill site area north of shaft
E5338602	337543	5511455	4.58	Waverly Raise area; muckpile (small) at the Ventilation shaft
E5338603	Star	ndard	8.70	Standard (CDN-GS-8A) Expected Au Value of 8.25 +/- 0.60 g/t
E5338604	337410	5511582	0.48	Sunbeam area; composite grabs; siliceous, pyritic, grdt*
E5338605	337405	5511583	0.53	Sunbeam area; composite grabs; siliceous, pyritic, grdt
E5338606			0.07	Duplicate (reject from Agat #708633 (IOU20550)
E5338607	337404	5511587	0.41	Sunbeam area; composite grabs; siliceous, pyritic, grdt
E5338608	337393	5511586	7.68	Sunbeam area; composite grabs; siliceous, pyritic, grdt
E5338609	337401	5511578	3.11	Sunbeam area; composite grabs; siliceous, pyritic, grdt
E5338610	337404	5511580	1.49	Sunbeam area; composite grabs; siliceous, pyritic, grdt

^{*} granodiorite

Certificate of Analysis

AGAT WORK ORDER: 11U536801 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: SEARS BARRY & ASSOCIATES LTD

ATTENTION TO: JOAN BARRY

CLIENT NAME.	DEANS D	MINICA	SSOCIATES	LID	ATTENTION TO. JOAN DE	Ann i
DATE SAMPLED:	Oct 07, 2	011		DATE RECEIVED: Oct 07, 2011	DATE REPORTED: Oct 31, 2011	SAMPLE TYPE: Rock
А	nalyte: Log	Sample gin Weight	Au			
	Unit:	kg	ppm			
Sample Description	RDL:	0.01	0.002			
E5338597		1.60	3.44			
E5338598		1.74	0.414			
E5338599		1.44	1.25			
E5338600		2.18	0.594			
E5338601		0.94	1.02			
E5338602		1.52	4.58			
E5338603		0.06	8.70			
E5338604		1.68	0.478			
E5338605		1.74	0.531			
E5338606		0.74	0.068			
E5338607		1.74	0.413			
E5338608		1.54	7.68			
E5338609		0.98	3.11			
E5338610		1.60	1.49			

Comments: RDL - Reported Detection Limit

Certified By:

y Latomura

APPENDIX III

J. Davies – Sample Descriptions and Assay Results

		J. D	avies' Wes	t Hawk Lak	e Samples
Sample	Tag #	Easting	Northing	Au (g/t)	Description
CSM 11-01	1085968	337245	5511395	0.076	Granite w Qtz veining tr py
CSM 11-02	1085963	337740	5511550	0.007	Diorite Sheared and silc tr py
CSM 11-03	1085961	337708	5511356	0.672	Diorite w Qv tr py
CSM 11-04	1085958	337683	5511346	2.29	Diorite Sheared and silc 1-2% py
CSM 11-05	1085956	337402	5511582	0.071	Qtz Monzonite silic tr py
CSM 11-06	1085962	337721	5511360	0.007	Diorite (Waverly dump) tr py
CSM 11-07	1085957	337393	5511578	0.21	Qtz Monzonite sheared and silic tr py
CSM 11-08	1085953	337413	5511579	0.04	Qtz Monzonite layered and silic up to 2% py
CSM 11-09	1085955	337408	5511584	0.035	Qtz Monzonite breccia silic tr py
CSM 11-10	1085959	337700	5511357	0.005	Diorite (Waverly dump) 1-2% py
CSM 11-11	1085951	337675	5511755	0.064	Diorite silic tr py
CSM 11-12	1085952	337410	5511725	5.913	Qtz Monzonite frac tr py , cupy
CSM 11-13	1085954	337410	5511577	0.062	Qtz Monzonite frac 1-2% py
CSM 11-14	1085960	337767	5511395	0.568	Diorite Waverly Dump Fines tr py
CSM 11-15	1085964	338175	5511390	0.02	Basalt fn gr fract 2- 5% py
CSM 11-16	1085965	337235	5511395	0.335	Granodiorite sheared 1% py
CSM 11-17	1085966	337825	5511960	0.007	Gabbro mag tr py
CSM 11-18	1085967	338125	5511535	0.031	Basalt med gr fract 1% py

Canada P7B 5X5

Fax: (807) 622-7571 assay@accurassay.com

Thursday, November 10, 2011

Certificate of Analysis

Canadian Star Minerals 129 Midland Ave Toronto, On, CAN M1N 3Z8 Ph#: (416) 261-3925 Fax#: (416) 261-7528

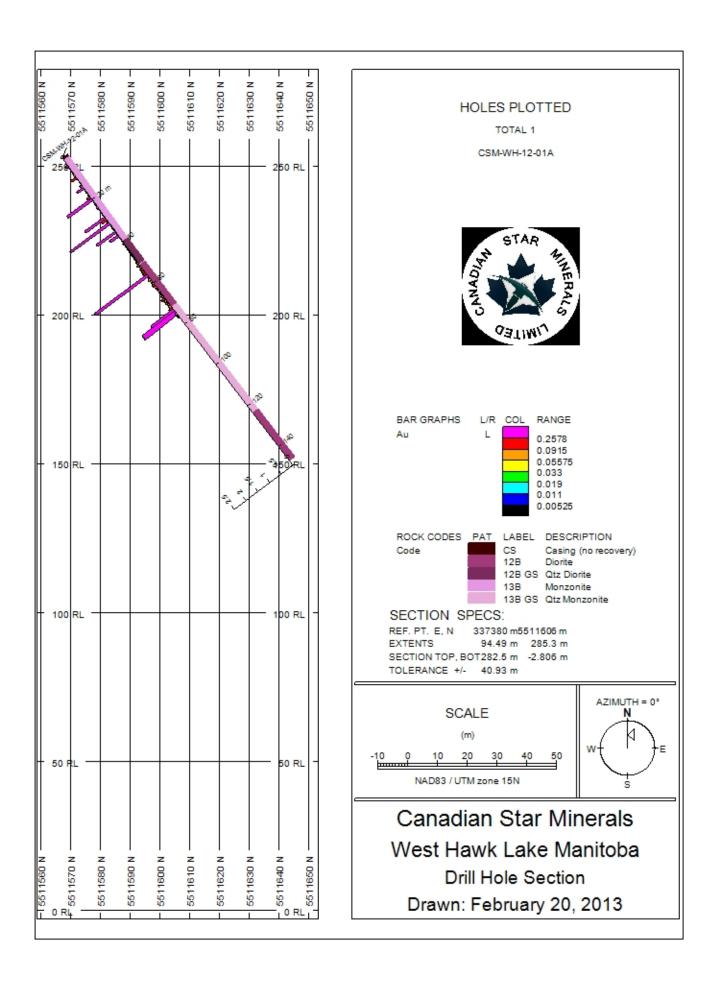
Email: cnorth44@gmail.com, vdrylie@gmail.com

Date Received: 09/29/2011 Date Completed: 10/11/2011 Revised Date: 11/10/2011 Job #: 201110467 Reference: Sample #: 19

Acc#	Client ID	Au ppm	Ag ppm	Al %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Lí ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Se ppm	Si %	Sn ppm	Sr ppm	Ti ppm	TI ppm	V ppm	W ppm	Y ppm	Zn ppm
52436	1085953	0.040	<1	1.37	137	58	83	<2	3	0.65	<4	10	47	33	2.40	0.85	19	0.71	456	10	0.16	59	728	44	<5	<5	0.01	<10	29	705	10	31	<10	10	117
52437	1085956	0.071	<1	1.32	240	56	66	<2	1	0.83	<4	8	43	41	1.91	0.83	14	0.50	439	9	0.09	62	709	43	<5	<5	0.01	<10	34	474	4	16	<10	10	269
52438	1085957	0.210	<1	1.83	43	60	74	<2	<1	0.53	<4	6	31	73	1.89	0.74	17	0.51	213	8	0.14	53	649	116	<5	8	0.01	<10	40	292	5	10	<10	8	161
52439	1085958	2.290	<1	3.62	18317	58	89	2	12	1.63	<4	21	83	40	4.05	1.38	25	1.36	566	9	0.49	75	1787	33	<5	<5	< 0.01	<10	142	2090	8	86	13	15	65
52440	1085961	0.672	<1	2.09	7867	47	151	<2	<1	1.18	<4	20	72	16	3.81	1.56	25	1.33	555	9	0.20	57	1568	33	<5	<5	0.01	<10	74	2418	4	81	<10	14	43
52441	1085962	0.007	<1	2.20	54	64	213	<2	5	1.51	<4	23	100	47	4.28	1.65	38	1.46	735	9	0.20	65	1525	29	<5	<5	0.01	<10	71	3387	9	95	<10	18	84
52442	1085963	0.007	<1	3.27	1504	54	264	<2	3	2.33	<4	43	284	81	6.12	1.46	205	1.83	1018	9	0.27	123	621	38	5	<5	0.01	<10	41	2620	9	129	<10	11	86
52443	1085964	0.020	<1	0.39	47	44	33	<2	1	0.04	<4	<1	34	30	2.13	0.22	2	0.05	<100	14	0.02	50	143	19	<5	<5	0.01	<10	3	<100	4	15	<10	5	31
52444	1085965	0.335	<1	0.99	792	60	96	<2	<1	0.63	<4	6	48	15	1.76	0.69	12	0.56	302	7	0.12	51	524	14	<5	<5	0.01	<10	38	653	6	30	<10	5	42
52445	1085968	0.076	<1	1.03	428	59	107	<2	5	0.89	<4	7	44	11	1.84	0.75	11	0.61	360	8	0.16	49	545	20	<5	<5	0.01	<10	53	741	8	30	<10	6	31
52446D	1085968	0.074	<1	1.04	424	59	109	<2	3	0.90	<4	7	45	12	1.86	0.75	11	0.62	364	7	0.16	48	543	21	<5	<5	0.01	<10	54	752	8	30	<10	6	31
52447	1085951	0.064	<1	1.92	1869	99	232	<2	15	1.23	<4	16	114	24	3.18	1.85	37	1.04	555	9	0.17	28	1817	38	<5	24	0.02	<10	65	2946	3	82	19	15	71
52448	1085952	5.913	2	1.10	221	90	112	<2	5	0.32	18	6	169	51	2.75	1.00	18	0.56	473	11	0.12	20	763	634	<5	12	0.02	<10	23	1228	6	35	64	7	3161
52449	1085954	0.062	<1	0.99	261	89	56	<2	6	0.34	<4	7	123	31	2.22	0.81	12	0.53	390	8	0.13	18	762	68	<5	27	0.01	<10	16	670	3	20	17	7	98
52450	1085955	0.035	<1	1.17	119	95	90	<2	6	0.95	<4	8	142	25	1.87	1.01	17	0.58	497	6	0.13	19	834	45	<5	22	0.01	<10	41	1274	6	33	18	10	91
52451	1085959	< 0.005	<1	1.28	7474	103	91	<2	8	0.88	<4	18	161	24	3.80	1.20	21	1.05	662	10	0.17	36	2003	50	<5	10	0.03	<10	48	2152	7	85	22	11	47
52452	1085960	0.568	<1	1.51	167	88	187	<2	4	1.53	<4	16	145	42	3.24	1.62	35	1.08	643	9	0.15	33	1975	406	<5	22	0.02	<10	60	2955	8	92	22	13	77
52453	1085966	0.009	<1	2.95	31	87	1305	<2	14	2.62	4	31	133	190	5.15	2.84	32	1.71	874	10	0.28	58	5400	34	<5	15	0.02	<10	108	4401	10	150	20	17	94
52454	1085967	0.031	<1	1.51	23	78	95	2	8	1.08	6	24	66	41	5.24	0.44	2	1.14	540	16	0.62	73	1275	104	5	7	0.02	<10	232	4590	9	64	21	5	367
52455	1085981	1.930	<1	1.93	21	48	85	<2	7	1.30	<4	26	59	28	5.64	0.37	3	1.34	466	7	0.58	71	1117	83	<5	<5	0.01	<10	260	4344	11	60	<10	5	64

PROCEDURE CODES: ALP1, ALFA1, ALAR1

The results included on this report relate only to the items tested The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory

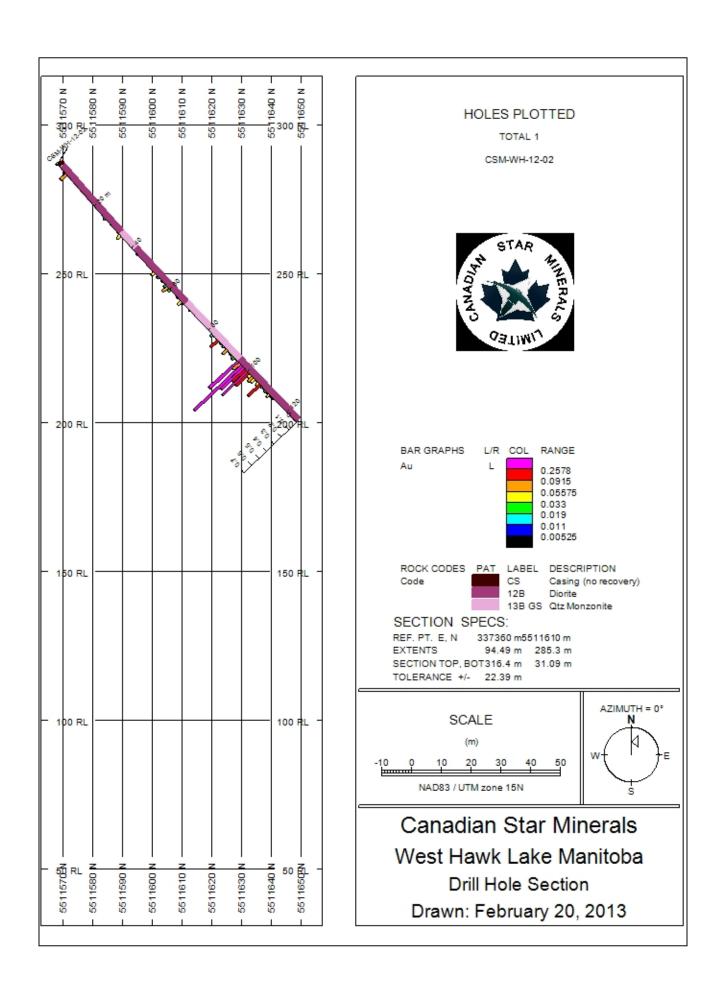

> -1093-11/10/2011 4:40 PM Page 1 of 1

APPENDIX IV

Drill Logs

DDH CSM-WH-12-01 through

DDH-WH-12-08

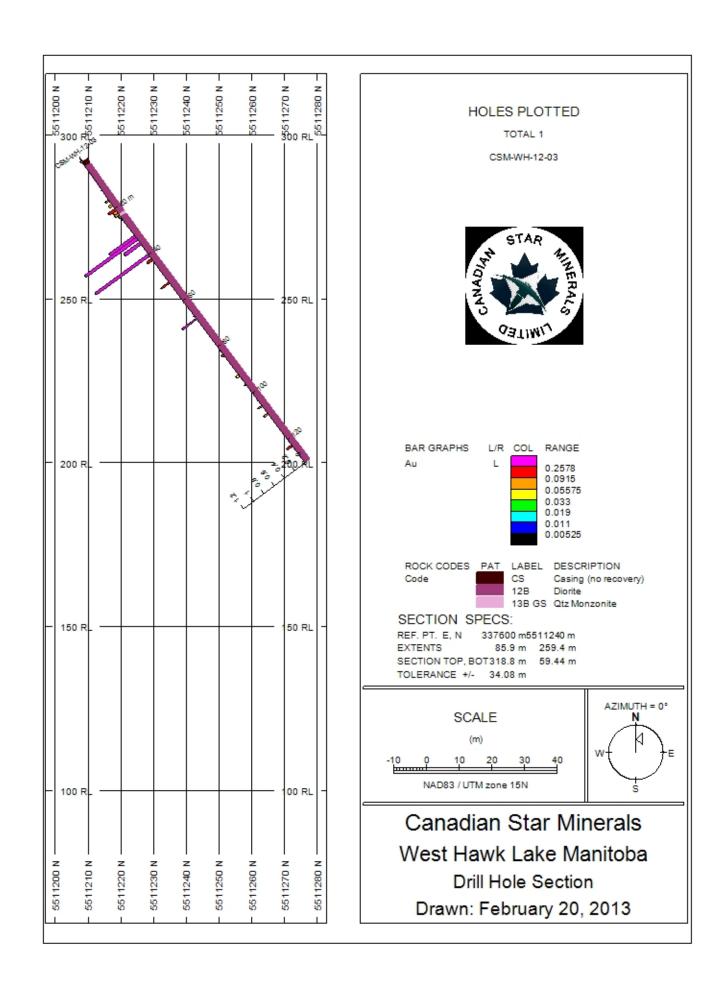

Drill Hole No.: CSM-WH-12-01A Line Elev. 253m Azimuth 315 Contractor: Cabo Drilling Angle -45 System: Metric UTM Logged By: B. Duncan 15N Length 147 337703 Easting Logged: Oct 24-25, 2012 5511329 Core Size Northing NQ Started 23/10/2012 Twp Province Manitoba Finished 24/10/2012 Property WestHawk NTS 52E Claim No. ML-018 Casing Left: YES Core Stored At: CSM

Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	315.0	5708
Single	55	-44.3	316.6	5716
Shot	100	-43.4	317.5	5720

Hole ID: CSM-WH-12-01A	From	То	Length(m)	Code	Comments
CSM-WH-12-01A	0	0.9	0.9	CS	Casing
@45°					
	0.9	40	39.1	13 GS1/2	Quartz Monzonite*: beige/lt.orange/blk on weathered (W) surface
Oct. 23, 2012				CRX POR	& pink/black/lt.grey on fresh (F) surfaces; fine-med grained with
				CHL1 EPD1	coarse grained potassium feldspar (Kfs) phenocrysts; Plagioclase
				SHD1 LOC	(PI) (45%), Kfs (20%), Amphibole (Amph) (25%), Biotite (Bi) (5%),

Hole ID: CSM-WH-12-01A	From	То	Length(m)		Comments
				JNT FRA FLT	& Quartz (Qtz) (5%); sulphide mineralization (mzn) of Pyrite (Py)/
				V3	Chalcopyrite (CP)/Pyrrhotite (PO) disseminated throughout
				PY CP PO	groundmass (2-4%); thin shears, joints (J) & fractures (frac)
				DIS VLT CTG	throughout zone; occasionally (occ) iron (Fe) stained zones; J1
					45° to CA @ 1.6, lined w/ Fe-Oxides; irregular frac @ 25° to CA
					@ 2.3; J2 @ 10° to CA @ 2.4-3.5, lined w/ limonite? Yel-Fe-oxide
					w/ 2mm Qtz vein along joint; thin shear @ 40° to CA @ 3.8; J3
					@ 35° to CA @4.1 & 4.4 w/ Py mzn; irreg twisted frac @ ~20° to
					CA @ 4.6, 4.2-4.35 lined w/ epidote (Epd) & carb; shear @
					20-30° to CA @ 4.5-4.9 & @ 80° to CA @ 5.3 mzd w/ Py; Qtz/Kfs
					vein @ 75° to CA @ 5.6 & 6.45 mzd w/ Py; shear @ 20° to CA @
					5.8 mzd w/ Py/CP/PO as veinlets, coatings, and disseminated; J4
					@ 25° to CA @ 6.75 lined w/ Py; shear @ 25° to CA @ 7.0, mzd
					a/a; Qtz vein @ 75° to CA @ 13.0 & @ 20° to CA @ 15.8, mzd w/
					Py; fault @ 19.9 (indeterminate slip direction) crosscut by shear,
					shear @ 20, 35° to CA crosscut by 80° to CA shear; shear @
					35° to CA @ 31.6 lined w/ Epd; Qtz/Kfs/Bi/ vein @ 80° to CA @
					32.2 mzd w/ Py
	40	51	11	12B GS1/2	Sheared, Silicified Quartz Diorite: grey/blk/white to loc medium
				CRX POR	(med)/dark (dk) green (gn) (F); fine grained; pervasively (prv)
				SHD3 FOL3	alt to Chl or Epd; multiple shear orientations all mzd (2-6%);
				CHL3 SIL	abundant Qtz veins and frequent shears; significantly less Kfs,
				PRV LOC	phenocrysts are now commonly grey PI; shear @ 20° to CA @
				V3 V3S	40.0 mzd w/ Py/CP/PO, shear series minimum every 10-20cm;
				PY CP PO	Qtz vein @ 20° to CA @ 40.4 assoc w/ large zoned Pl phenocryst
				MO CTG	shear @ 135° to CA @ 40.6 mzd a/a; Qtz vein @ 20° to CA @
				DIS VLT	42.03, 43.7, 45.3, 45.5, 45.9, 46.7, 47.2, 47.3, 47.4, @ 30° to CA
					@ 44.2 (1.5cm), @ 45° to CA @ 44.5 (1.5cm), & @ 10° to CA @
					48.4; shear @ 20° to CA @ 47.1 mzd a/a & w/ molybdenite (MO)
	51	69	18	12B GS1	Intensely Sheared, Silicified Quartz Diorite**: drk/med gn/lt grey/
				SHD3 FOL3	white (F), fine grained, intensely shd w/ original fabric destroyed;
				CHL3 SIL	shears so commonly interlayered w/ Qtz veins that the unit has a
				PRV LOC	white tiger striped appearance; where not striped, this zone has a
				V3 V3S BAN	med olive green with black spot leopard print appearance; unit is
				ALT PAT	highly silicified and mineralized w/ Py/CP/PO/AS; intense shear
				JNT	@ 25° to CA @ 51.0 that is highly mineralized and overprints
				PY CP PO	other shears @ 45° & 70° to CA, alternating Qtz and Chl/Epd
				AS CTG	bands (1-2cm); bright gn waxy looking mineral (Jadeite?) @ 53.2;
				DIS VLT	series of joints @ 45° to CA @ 67.5
	69	71.5	2.5	12B GS1/2	Sheared, Silicified Quartz Diorite: much a/a, less sheared and

Hole ID: CSM-WH-12-01A	From	То	Length(m)	Code	Comments
				CRX POR	less Qtz veins, no MO
				SHD3 FOL3	
				CHL3 SIL	
				PRV LOC	
				V3 V3S	
				PY CP PO	
				CTG DIS	
				VLT	
	71.5	123.3	51.8	13 GS1/2	Quartz Monzonite*: much as first described, 2-3% sulphide
				E1A LOC	mineralization disseminated throughout groundmass and along
				CRX POR	the multiple thin shears; Qtz vein @ 80° to CA @ 43.25, mzd w/
				CHL1 EPD1	Py; shear @ 80° to CA @ 43.5 & @ 30° to CA @ 43.1, both mzd
				SHD1 SIL	w/ Py/PO; highly silicified & Fe-stained zone with original fabric
				LOC	nearly to completely obliterated w/ some Kfs phenocryst ghosts
				JNT FRA	btwn 74.4-76.0; Qtz/Cal/Bi vein mzd w/ Py @ 30° to CA @ 74.4 &
				V2 V3 V3S	Kfs/Epd mzd a/a; J1 @ 35° & 30° to CA @ 34.9 w/ Py coating; J2
				PY CP PO	@ 60° to CA @ 76.6 mzd a/a & J3 @ 55° to CA @ 77.2 mzd w/
				AS HE DIS	Py/AS; shear @ 50° to CA @ 76.7 mzd a/a; Qtz vein @ 70° to CA
				VLT CTG	@ 77.0; irreg frac @ 15° to CA @ 78.0 lined w/ Epd/Cal;
					becoming less mineralized beyond 83.0 (1-2%); mzd shears @
					70-80 & 30° to CA every 10-20cm; Qtz/Chl vein mzd w/ Py @ 30°
					to CA @ 99.0 (1.5cm); occ basalt clasts (2-4cm, rounded) @ 90.6
					& 103.8; large Qtz vein and silicified zone @ 105.3-105.9 mzd w/
					Py/CP/PO/AS; Fe-stained/silicified throughout @ 105.9-123.5,
					original fabric destroyed btwn 111.0-112.0 & 121.5-121.75, in this
					zone, shears are @ 80° to CA & Qtz/Carb veins are @ 50° to CA
	123.3	147	23.7		Quartz Diorite: med grey & blk on (F) surfaces; fine-med w/ occ
				CHL1 SHD1	coarse grained, porphyritic with (PI) phenocrysts; PI (70%), Amph
				LOC V3	(25%), & quartz (Qtz) (5%); Amph occ alt to Chl; minor mzn 1%
				FOL1 FRA	along shear or joint planes; shear @ 0-10° to CA @ 126.1-127.0
				JNT	mzd w/ Py; occ shears @ 35° to CA; J1 @ 30° to CA @ 130.25
				PY VLT	mzd w/ Py; Qtz/Chl vein @ 20-25° to CA @ 136.3 mzd w/ Py
				DIS CTG	
EOH		147			



Drill Hole No.:	CSM-WH-12-02		
Line	Elev253m	Azimuth <u>330</u>	Contractor: Cabo
		Angle45	System: Metric
UTM	15N	Length115m	Logged By: J.Davies
Easting Northing	337382 5511568	Core Size NQ	Logged: Oct 15-16, 2012
			Started 14-Oct-12
Twp		Province Manitoba	Finished 14-Oct-12
Property	WestHawk	NTS 52E	
Claim No.	ML-018		Casing Left: YES
			Core Stored At: CSM

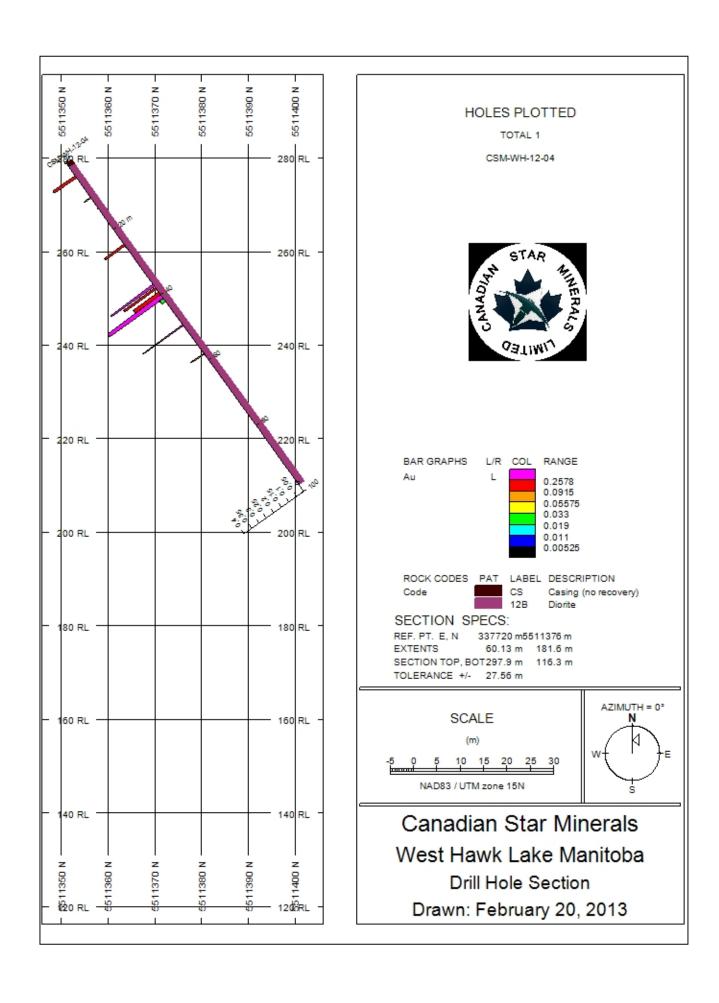
Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	330.0	5715
Single	61	-43.7	333.9	5740
Shot	124	-43.2	334.8	5722
		·		
		·		

Hole ID: CSM-WH-12-02	From	То	Length(m)	Code	Comments
CSM-WH-12-02	0	1.5	1.5		Casing
	1.5	33.5	32	CS	Mod Sheared, w Silicification Diorite- Qtz Diorite
				12B GS1/2	(med)/dark (dk) green (gn) (F); fine grained; pervasively (prv)
				CRX POR	alt to Chl or Epd; multiple shear orientations all mzd (3-8%);
				SHD3 FOL3	Kspar alt w Qtz veinlets along shears; significantly less Kfs,
				CHL3 SIL	primary texture is alt grey PI; shear @ 30° to CA
				PRV LOC	sulphide mineralization is trace to 1%
				V3 V3S	
				Ру	

Hole ID: CSM-WH-12-02	From	То	Length(m)	Code	Comments
	33.5	41	7.5		Quartz Monzonite w Kspar alteration
				13 GS	& pink/black/lt.grey on fresh (F) surfaces; fine-med grained with
				CRX POR	coarse grained potassium feldspar (Kfs) phenocrysts; Plagioclase
				CHL1 EPD1	(PI) (40%), Kfs (15%), Amphibole (Amph) (20%), Biotite (Bi) (5%),
				SHD1 LOC	& Quartz (Qtz) (<5%); sulphide mineralization (mzn) of Pyrite (Py)/
				JNT FRA FLT	Pyrrhotite (PO) disseminated throughout w trace Aspy
				V2	groundmass (3-5%); thin shears, joints (J) & fractures (frac)
				PY PO ASPY	throughout zone; occasionally (occ) iron (Fe) stained zones
				DIS VLT CTG	55° to CA @ 2.1, lined w/ Fe-Oxides; irregular frac @ 33° to CA
	40	67.5	27.5		Mod Sheared, Silicified Diorite to Quartz Diorite: grey/blk/white
				12B GS1/2	(med)/dark (dk) green (gn) (F); fine grained; pervasively (prv)
				CRX POR	alt to Chl or Epd; multiple shear orientations all mzd (3-5%);
				SHD3 FOL3	abundant Qtz veins and frequent shears; significantly less Kfs,
				CHL3 SIL	phenocrysts are now commonly grey PI; shear @ 20° to CA @
				PRV LOC	51.0 mzd w/ Py/CP/PO, shear series minimum every 5-10cm;
				V3 V3S	Qtz vein @ 19° to CA @ 45.3 assoc w/ Kspar alt phenocryst
				PY CP PO	shear @ 127° to CA @ 453 mzd a/a; Qtz vein @ 20° to CA @
				CTG	42.03, 43.7, 45.3, 45.5, 45.9, 46.7, 47.2, 47.3, 47.4, @ 30° to CA
				DIS VLT	@ 44.2 (1.5cm), @ 45° to CA @ 44.5 (1.5cm), & @ 10° to CA @
					48.4; shear @ 25° to CA @ 55.1 mzd a/a
	67.5	93.5	26		Quartz Monzonite*: similar to avove section w increase in
				13 GS1/2	mineralization disseminated throughout groundmass and along
				E1A LOC	the multiple thin shears; Qtz veins @ 75° to CA @ 41.15, mzd w/
				CRX POR	Py; shear @ 80° to CA @ 43.5 & @ 30° to CA @ 43.1, both mzd
				CHL1 EPD1	w/ Py/PO; highly silicified & Fe-stained zone with original fabric
				SHD1 SIL	nearly to completely obliterated w/ some Kfs phenocryst remnants
				LOC	btwn 77.3-82.0; Qtz/Cal/Bi vein mzd w/ Py @ 25.° to CA
				JNT FRA	Kfs/Epd mzd a/a; J1 @ 35° & 30° to CA @ 34.9 w/ Py coating; J2
				V2 V3 V3S	065° to CA @ 86.6 mzd a/a & J3 @ 55° to CA @ 87.6 mzd w/
				PY CP PO	Py/AS; shear @ 50° to CA @ 86.7 mzd a/a; Qtz vein @ 70° to CA
				AS HE DIS	@ 77.0; irreg frac @ 15° to CA @ 78.0 lined w/ Epd/Cal;
				VLT CTG	becoming less mineralized beyond 93.0 (1-2%); mzd shears @
	93.5	125	31.5		Quartz Diorite: med grey & blk on (F) surfaces; fine-med w/ occ
				12B	coarse grained, porphyritic with (PI) phenocrysts; PI (70%), Amph
				CHL1 SHD1	(25%), & quartz (Qtz) (5%); Amph occ alt to Chl; minor mzn 1%
				V2	along shear or joint planes; shear @ 0-15° to CA @ 116.2-123.0
				FOL1 FRA	mzd w/ Py; occ shears @ 30° to CA; J1 @ 30° to CA @ 120.50
				JNT	mzd w/ Py; Qtz/Chl vein @ 15-25° to CA @ 122.6 mzd w/ Py
		15-		PY VLT	
EOH		125			

Drill Hole No.:	CSM-WH-12-03		
Line	Elev253m	Azimuth 315	_ Contractor: Cabo Drilling
		Angle45	_ System: Metric
UTM Easting	<u>15N</u>	Length130	Logged By: B. Duncan Logged: Oct 14-15, 2012
Northing	5511208	Core Size NQ	- Started 12/10/2012
Twp		Province Manitoba	Finished 13/11/2012
Property Claim No.	WestHawk ML-018	NTS <u>52E</u>	Casing Left: YES Core Stored At: CSM

Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	315.0	5689
Single	55	-44.9	318.5	5696
Shot				


Hole ID: CSM-WH-12-03	From	То	Length(m)	Code	Comments
CSM-WH-12-03	0	2	2	CS	Casing
@ 45°					
Oct. 13, 2012	2	12.3	10.3	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
				CRX POR	fresh (F) and peach & blk on weathered (W) surfaces; med-
				CHL1 LOC	occasionally (occ) coarse (crs) grained, equigranular (eqgr)
					to occ. porphyritic with plagioclase (PI) phenocrysts;
					Pl. (65%), amphibole (Amph) (25%), biotite (Bi) (5%), and

Hole ID: CSM-WH-12-03	From	То	Length(m)	Code	Comments
					quartz (Qtz) (5%); occ iron oxide (Fe) staining along oblique
					fractures (frac's) which are typically 35° to core axis (CA), crs
					Bi & Fe-stained Fs along oblique frac's, common (com)
					horizontal frac's, minor (mnr) chlorite (Chl) alteration (alt) of Bi
					& Amph.
	12.3	12.37	0.07	12B GS1	Sheared Quartz Diorite: dark (drk) green (gn) on F & W
				SHD3	surfaces; fine (avg)- occ med grained; eqgr- occ porphyritic;
				CHL4 PRV	pervasively (prv) alt to Chl; < 1mm scale shear planes oriented
				PY CP	45° to CA; mineralized (mzd) with 2% fine (avg) -med grained
				DIS VNT	sulphides including (incl) pyrite (Py) & chalcopyrite (CP),
				CTG	sulphides com occur along shear planes as veinlets,
					disseminated (dissem) or scattered within (w/in) groundmass
					(gm), or as coatings along frac planes, scattered grains are
					typically (typ) med grained rather than fine (f) grained.
	12.37	16.46	4.09	a/a	Quartz Diorite:much as above (a/a)
					, i
	16.46	16.54	0.08	12B GS1	Sheared Quartz Diorite: much a/a except with (w/) Qtz vein at
				SHD3 V3	(@) 16.5; f-med grained Py, CP & pyrrhotite (PO) along shear
				CHL4 PRV	planes throughout (tout); rare crs grained Bi veins cross-cut
				PY CP PO	(x-cut) qtz veins
				DIS VNT	
				CTG	
	16.54	18.3	1.76	a/a	Quartz Diorite:much a/a
	18.3	19.87	1.57	12B GS1	Sheared Quartz Diorite: much a/a except thicker (1cm) Qtz
				SHD3 V3	vein @ 18.65, qtz vein associated (assoc) w/Chl veining @
				CHL4 PRV	base of shear zone (19.50-19.87); unit is interlayered (IL) w/
				EPD1 LOC	reddish-brown feldspar (Fs) Qtz Diorite, in this Fe-stained Fs
				PY CP PO	zone, a thin chlorite shear is altered to epidote; sulphides
				DIS VNT	disseminated tout and along shear planes, but esp along
				CTG	oblique frac's
	19.87	20.12	0.25	a/a	Quartz Diorite:much a/a
	20.12	20.29	0.17	12B GS1	Sheared Quartz Diorite: much a/a except for occurrence of
				SHD3	prominent chlorite veins @ 65°/ 45°/90° to CA
				CHL4 PRV	
				PY CP	
				DIS VNT	
				CTG	

Hole ID: CSM-WH-12-03	From	То	Length(m)	Code	Comments
	20.29	21.5	1.21	12B GS2	Quartz Diorite:much a/a, but with com oblique frac's 35° to
				CRX POR	CA showing Py/ CP sulphide mineralization (mzn) as coatings
				CHL1 LOC	or to the ming of the confirmed minor diseases (main) do doddings
				PY CP	
				CTG FRA	
	21.5	21.9	0.4	a/a	Sheared Quartz Diorite: much as first described
			-		
	21.9	22.6	0.7	12B GS2	Quartz Diorite: much as first described
				CRX POR	
				CHL1 LOC	
	22.6	23.5	0.9	13/ 12B	Quartz Syenite: mnr zone w/ more potassium feldspar (Kfs);
				GS2 CHL	Kfs (60%), PI (20%), Bi (15%), & Qtz (5%); pegmatitic vein of
				PY V2S	Qtz, Bi, Calcite (Cal) 85° to CA; med grained Py w/in Qtz veins
					at 22.85 & 23.1
	23.5	23.85	0.35	12B GS2	Quartz Diorite: much as first described
				CRX POR	
				CHL1 LOC	
	23.85	24.6	0.75	a/a	Quartz Diorite: much a/a except PI are com Fe-stained;
					sheared zone @ 24.0 oriented 45° to CA
	24.6	31.7	7.1	a/a	Quartz Diorite: much as first described
	31.7	31.85	0.15	12B GS1	Sheared Quartz Diorite: much a/a except presence of a
				SHD3 V3	pegmatitic vein of Qtz, Bi, & Chl
				CHL4 PRV	
				PY CP PO	
				DIS VNT	
				CTG	
	31.85	35.2	3.35	12B GS2	Interlayered Qtz Diorite & Sheared Qtz Diorite: much a/a w/
				CRX POR	increased shearing in lower 0.5m assoc w/ visible GOLD, com
				CHL1 LOC	Py, CP, PO (2-3%) along shear planes; oblique frac's avg 45°,
				12B GS1	some 20°
				SHD3 V3	
				CHL4 PRV	
				PY CP PO	
				VG1 DIS	
				VNT CTG	

Hole ID: CSM-WH-12-03	From	То	Length(m)	Code	Comments
	-	-	_ · J· ()		
	35.2	41.05	5.85	12B GS2	Quartz Diorite: much as first described
		7.1100		CRX POR	
				CHL1 LOC	
	41.05	42.65	1.6	12B GS1	Interlayered Sheared Quartz Diorite and Quartz Diorite:
				SHD3 V3	Fe-stained PI from 42.15-42.65
				CHL4 PRV	
				PY CP PO	
				DIS VNT	
				CTG	
	42.65	51.8	9.15	a/a	Quartz Diorite: much a/a
	51.8	52.3	0.5	a/a	Sheared Quartz Diorite: much a/a
	52.3	60.5	8.2	a/a	Quartz Diorite: much a/a
	60.5	61	0.5	a/a	Sheared Quartz Diorite: much a/a
	61	81.35	20.35	a/a	Quartz Diorite: much a/a
	81.35	81.9	0.55	SHD3 V3S	Sheared Quartz Diorite: much a/a w/ 10cm mzd qtz
				CHL4 PRV	vein @ 81.35
				PY CP PO	
				VNT CTG	
	81.9	88.3	6.4	a/a	Quartz Diorite: a/a
	88.3	89	0.7	13 V3 PY	Quartz Syenite: as first described w/ Py mzd qtz vein @ 88.8
	89	92	3	a/a	Quartz Diorite: a/a
	92	93.3	1.3	12B GS1	Sheared Quartz Diorite w/ minor interlayered Qtz Diorite:
				SHD3 V3	*although pervasively sheared, it appears mzd zones were
				CHL4 PRV	leached and altered by poss hydrothermal (HT) activity
	93.3	96	2.7	a/a	Quartz Diorite: a/a
	96	96.2	0.2	a/a	Sheared Quartz Diorite: much as first described w/ Qtz
					vein @ 10° to CA @ 96.1

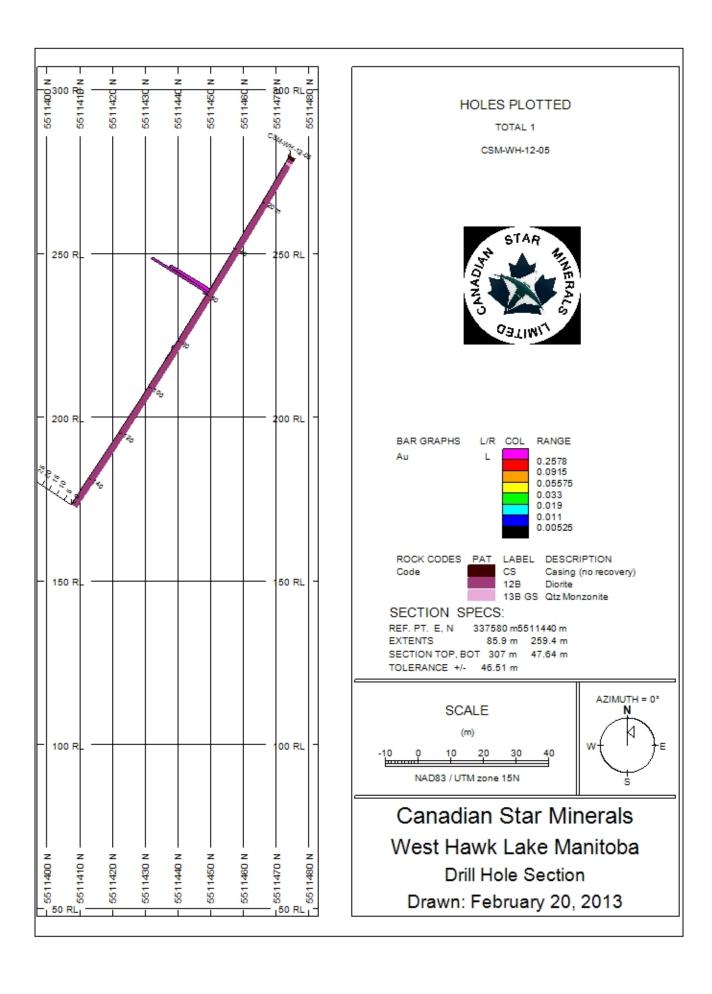
Hole ID: CSM-WH-12-03	From	То	Length(m)	Code	Comments
			<u> </u>		
	96.2	103.1	6.9	a/a	Quartz Diorite: a/a
	103.1	103.6	0.5	SHD3 V3S	Sheared Quartz Diorite: much a/a
				CHL4 PRV	
				PY CP PO	
				VNT CTG	
	103.6	108.65	5.05	12B GS2	Quartz Diorite: much a/a except w/ a 15cm round patch of HT
				CRX POR	alt to Chl near a 1mm Qtz vein @ 105.1
				CHL1 LOC	
				PAT V3	
	108.65	108.85	0.2	12B GS1	Sheared Quartz Diorite: much as first described except w/
				SHD3 V3	a Qtz vein 1cm thick @108.7, @ 40° to CA
				CHL4 PRV	
	108.85	122.55	13.7	12B GS2	Quartz Diorite: much a/a except less PI, but mnr Kfs &
				CRX POR	more Qtz
				CHL1 LOC	
	122.55	122.85	0.3	a/a	Sheared Quartz Diorite: much as first described w/ 1cm Qtz
					vein @ 10° to CA @ 122.8
	122.85	130	7.15	a/a	Quartz Diorite: much a/a except less Pl, but more
					mnr Kfs & Qtz
EOH		130			

Drill Hole No.: CSM-WH-12-04 Line Elev. 253m Azimuth 315 Contractor: Cabo Drilling Angle System: -45 Metric UTM Logged By: B. Duncan 15N Length 98m Easting 337743 Logged: Oct 16-17, 2012 5511351 Core Size NQ Northing Started 15/10/2012

 Twp
 Province Manitoba
 Finished
 15/10/2012

 Property
 WestHawk
 NTS
 52E

Claim No. ML-018 Casing Left: YES Core Stored At: CSM


Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	315.0	5745
Single	55	-44.2	316.0	5749
Shot	100	-44.5	314.5	5757

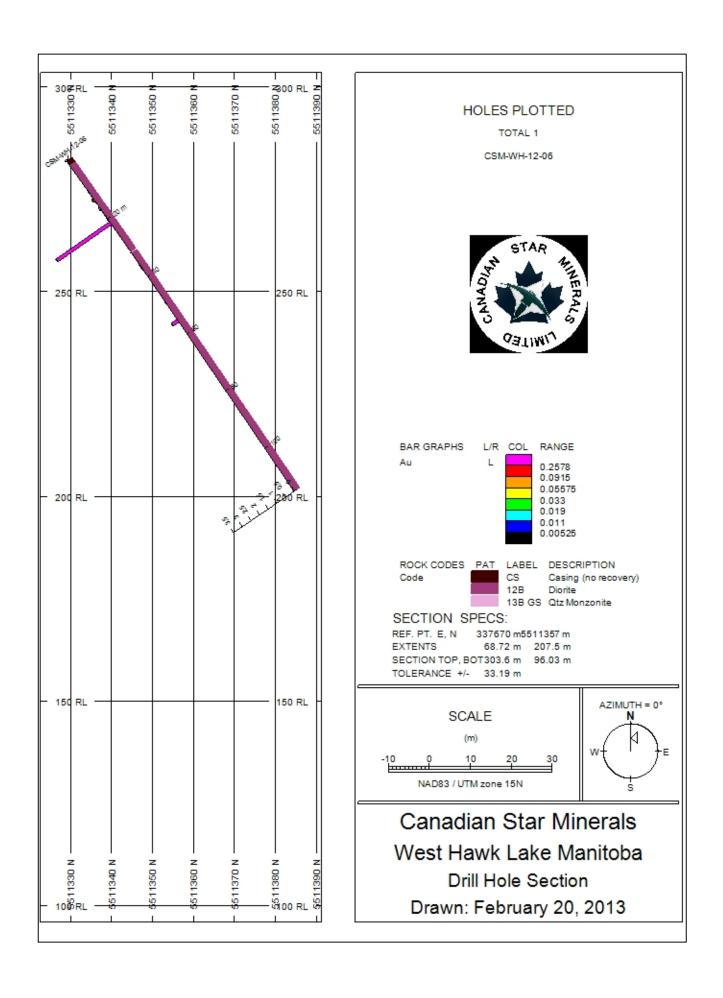
Hole ID: CSM-WH-12-04	From	То	Length(m)	Code	Comments
CSM-WH-12-04	0	1.3	1.3	CS	Casing
@45°					
Oct.16, 2012	1.3	3.65	2.35	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
				CRX POR	fresh (F) and peach & blk on weathered (W) surfaces; med-
				CHL1 LOC	occasionally (occ) coarse (crs) grained, equigranular (eqgr)
					to occ. porphyritic with plagioclase (PI) phenocrysts; PI (65%),

Hole ID: CSM-WH-12-04	From	То	Length(m)	Code	Comments
			<u> </u>		biotite (Bi) (20%), amphibole (Amph) (5%), & quartz (Qtz) (5%);
					Bi com altered (alt) to chlorite (Chl); Bi com lining oblique
					fractures (frac's) which are typically 45° to core axis (CA)
	3.65	4.55	0.9	12B GS1/2	Sheared Quartz Diorite: dark (drk) green (gn) on F & W
				SHD2 V3S	surfaces; fine (avg)- med grained; eggr- augen porphyroblastic;
				CHL4 PRV	pervasively (prv) alt to Chl, sericite (Ser), & silicified; < 1mm
				FOL3 FRA	scale crenulated shear planes oriented 45° to CA;
				PY CP	med grainedFs augens concentrated along shear planes;
				DIS	mineralized (mzd) with (w/) 2% fine (avg) -med grained
					sulphides including (incl) pyrite (Py) & chalcopyrite (CP),
					sulphides com occur along shear planes as veinlets,
					disseminated (dissem) or scattered within (w/in) groundmass
					(gm), or as coatings along frac planes, scattered grains are
					typically (typ) med grained rather than fine (f) grained.
	4.55	10.95	6.4	12B GS2	Quartz Diorite:much as above (a/a) but w/ potassium feldspar
				CRX POR	(Kfs)-rich zones near thin Qtz veins such as at (@) 6.7
				CHL1 LOC	
				V3	
	10.95	11.3	0.35	a/a	Sheared Quartz Diorite: much a/a except w/ less Fs augens
	11.3	13.6	2.3	12B 13	Quartz Diorite w/ minor Quartz Syenite: much a/a but with Kfs-
				GS2 CRX	rich zones @ upper and lower contact w/ Sheared Qtz Diorite
				POR	
				CHL1 LOC	
	13.6	14	0.4	12B GS1/2	Sheared Quartz Diorite: much a/a except less intense shear;
				SHD2 V3S	more iron oxide (Fe)-stained frac's @ 20° & 90° to CA; milky
				CHL4 PRV	white Qtz vein @ 13.9, disseminated Py
				FOL FRA	
				PY CP	
				DIS	
	14	24.2	10.2	12B 13	Quartz Diorite to Quartz Monzonite: Kfs content in this section
				GS2 CRX	increases to nearly 10% as PI and Amph decrease; Fe-stained
				POR V1	PI localized near horizontal frac @18.0, oblique frac @ 10° &
				CHL1 LOC	20° to CA @ 17.5 & 18.5 respectively, 3mm calcite (cal)-healed
					vertical (vert) frac @ 20° to CA, increasing (inc) frequency of

Hole ID: CSM-WH-12-04	From	То	Length(m)	Code	Comments
					Chl lined healed oblique frac's 35° to CA starting @ 19.8, this
					occurrence coincides w/ inc Fe-stained PI, ends @ 20.5;
					small shear at 20.3 @ 45° to CA
	24.2	26.25	2.05	12B 13	Sheared Quartz Diorite interlayered w/ Quartz Syenite: com
				SHD CHL4	Fe-stained Qtz Syenite, intense fine-grained sub-horiz shear @
				PRV GS1	60-85° to CA between 24.65-24.83 & 25.00-25.65; 1cm Qtz/Fs
				FOL4	vein @ 35° to CA @ 24.2, pegmatitic vein of Qtz/Kfs/Bi/Cal @
				FRA V1	35° to CA @24.55, 1cm Bi/Qtz vein @ 35° to CA @ 25.7;
				PAT CHL	hydrothermally altered patch (cross cuts a vein) w/Qtz Syenite
				GS2 V3S	w/in shear; occ sub-vertical frac @ 20° to CA healed w/ Cal;
				DIS PY	little no no visible sulphides (if present are very finely dissem),
					some fine grained Py @ 26.2 disseminated w/in Qtz Syenite
					adjacent to Bi/Qtz vein @25.7
	26.25	36.7	10.45	12B GS2	Quartz Diorite: much as first described except w/ only 5% Kfs,
				CRX POR	however sporadic Kfs veins throughout @ 20° to CA @ 29.8 &
				CHL1 LOC	30.75; Chl alt patch @ 30 in assoc w/ a Chl vein @ 45° to CA
				PAT V3	w/ sulphides alonf Chl vein; Py, CP, PO also along frac's
				PY CP PO	@ 50° to CA in assoc w/ a thin Qtz/Cal vein @ 45° to CA @ 33.8
				DIS CTG	
	36.7	44.9		12B GS2	Interlayered Quartz Diorite & Sheared Quartz Diorite: Qtz Diorite
				CRX POR	has little to no Kfs; sheared zone are nicely mineralized (2-6%)
				CHL1 LOC	w/ occ qtz veins ex. @ 36.85 is a 5cm thick vein @ 35° to CA;
				12B GS1	Sheared areas Chl alt veins present in a series @ 45° to CA
				SHD3 V3S	& cross-cut thin Qtz/Carb/Chl veins lining healed irregular vert
				CHL4 PRV	frac @ 25° to 35° to CA @ 39.5 & 39.7; both Chl veins, shear,
				FOL FRA	& Qtz/Carb veins are mineralized with Py, CP, PO, AS **;
				PY CP PO	sheared plane lined with PO, CP, and minor Py @41.8 @
				AS DIS	85° to CA (sub-horizontal) from 43.0-46.0; AS zone (comm
				CTG SCT	assoc w/ high temperature hyfrothermal gold deposits) is
					from 38.8 to 44.9; towards lower contact of section,
					increasingly thicker interlayers of Qtz Diorite, but w/
					continuing 5-10cm thick sheared zones w/ sub-horiz
					frac's/shears lined w/ sulphides
	44.9	48.95		12B GS2	Quartz Diorite: much as first described except w/ only 5% Kfs,
				CRX POR	frac @ 85°, 35°, & 20° to CA; 1cm Qtz/Kfs vein @ 45° to CA;
				CHL1 LOC	healed Qtz/Carb frac @ 20° to CA, Chl/Bi veins @ 85°/35°
					to CA
	48.95	49.3	0.35	a/a	Hydrothermally altered Quartz Diorite: BARREN, common Chl

Hole ID: CSM-WH-12-04	From	То	Length(m)	Code	Comments
					veins @ 35°/45°/90° to CA; 1cm Qtz/Kfs vein @ 35° to CA;
					Qtz/Kfs/Carb vein @ 90° to CA
	49.3	52.85	3.55	12B GS2	Quartz Diorite: much a/a w/ occ Chl veins @ 35° to CA; some
				CRX POR	mzd w/ fine-med grained Py
				CHL1 LOC	
				PY CTG	
	52.85	53.2	0.35	12B GS1	Sheared Quartz Diorite: Chl alt; Chl schist in part with mzn
				SHD3 V3S	w/ Py/PO/CP @ 20°/25° to CA
				CHL4 PRV	
				FOL FRA	
				PY CP	
				CTG SCT	
	53.2	58.7	5.5	a/a	Quartz Diorite: much a/a
	58.7	59.05	0.35	a/a	Sheared Quartz Diorite: much a/a; shear planes @
					35° to CA lined w/ Py/CP
			·		
	59.05	98	38.95	a/a	Quartz Diorite: much a/a; occ sub-vert Qtz/Kfs veins up to
EOH		98			1 cm thick @ 20° to CA; some lined w/ Py/CP

Drill Hole No.: CSM-WH-12-05 Contractor: Cabo Line Elev. 253m Azimuth 315 Drilling Angle -45 System: Metric UTM 15N Length 151.5m Logged By: B. Duncan 337542 Easting Logged: Oct 19-20, 2012 Northing 5511474 Core Size NQ Started 17/10/2012 Finished 18/10/2012 Twp Province Manitoba Property WestHawk NTS 52E Claim No. ML-018 Casing Left: YES Core Stored At: CSM


Туре	Depth	Angle	True Az	Mag
Flexit	6	-45.0	126.0	5725
Single	76	-44.7	128.3	5718
Shot	145	-44.3	130.5	5686

^{**}using 1 E declination (added to instrument reading)

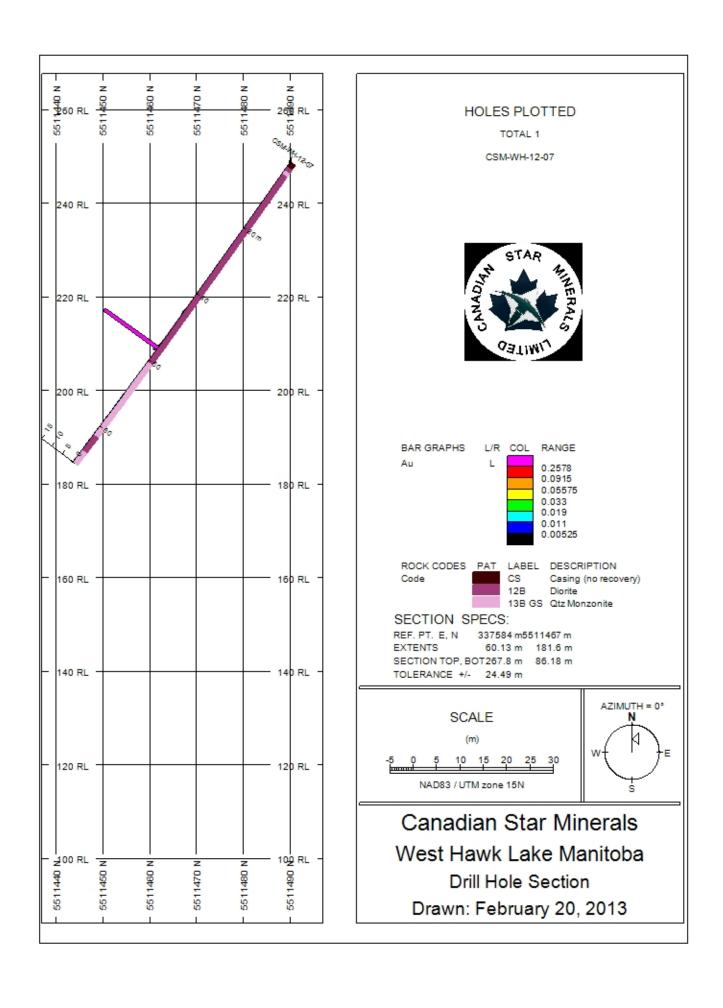
Hole ID: CSM-WH-12-05	From	То	Length(m)	Code	Comments
CSM-WH-12-05	0	1.5	1.5	CS	Casing
@45°					
Oct. 18, 2012	1.5	2.1	0.6	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
				CRX POR	fresh (F) and peach & blk on weathered (W) surfaces; med-
				CHL1 LOC	occasionally (occ) coarse (crs) grained, equigranular (eqgr)
					to occ. porphyritic with plagioclase (PI) phenocrysts; PI (65%),
					biotite (Bi) (30%), amphibole (Amph) (5%), & quartz (Qtz) (5%);
					Bi com altered (alt) to chlorite (Chl)

Hole ID: CSM-WH-12-05	From	То	Length(m)	Code	Comments
	2.1			12B POR	Altered Quartz Diorite: F surfaces dark green/blk; fine-med
				GS1 CHL3	grained; Chl alt & silicified lower contact rubbly, upper contact
				PRV PAT	with (w/) 2-3mm Qtz/potassium feldspar (Kfs) vein @ 25° to CA
				SIL V3	@ 2.6m
					<u> </u>
	2.6	3.7	1.1	13 / E1A	Quartz Monzodiorite & Basalt Alloclastic Breccia: groundmass:
	-			CRX POR	light (It) grey/pink/blk; fine-med grained w/ crs grained
				MAS BRX	Pl/ Amph phenocrysts w/ occ Qtz blebs; Pl (65%), Bi (15%),
				GS2/ GS1	Kfs (10%), & Amph (5%); joi
				CHL1 LOC	Fe-stained Fs; pin point vugs throughout; clasts: dk gn/blk;
				PY CP DIS	aphanitic; com alt to Chl some recrystallized to fine grained
				JNT V	Diorite; rounded to subangular at base; clast size ranges from
				OITT V	<0.5cm at lower contact to 8cm (avg 3cm) at upper (u) contact;
		<u> </u>			assoc w/ coarser (up to very coarse) grained phenocrysts; com
					mineralized (mzd) w/ v.fine grained Pyrite (Py) &
					chalcopyrite (CP); gradational low contact; 1-2mm Kfs veinlets
					crosscuts basalt @ ~10° to CA near top contact
		 			To to Orthodi top contact
	3.7	47	43.3	12B GS2	Quartz Diorite: med-coarse grained, more crs grained PI
	5.7	 	70.0	CRX POR	phenocrysts; irreg frac @ 45° to CA @ 4.05; J1 @ 45° to CA @
				CHL1 LOC	4.55; small mzd Qtz vein w/in shear @ 45° to CA @ 6.5 to 6.6;
				SIL BLE PAT	sulphides include Py, Cp, PO, AS; qtz vein (0.5cm) @ 45° to CA
				JNT V3	@ 7.9; grain size decreases to fine-med grained; sporadic
				SHD LOC	rounded- angular basalt clasts (3-12cm), fine dissem mzn a/a
				PY CP PO	in this finer grained zone; return to med-crs graine size @15.95;
				AS DIS VNT	bleached alt patch (20cm) @ 15.78; fine grained Qtz Di (3cm)
				CTG SCT	@ 45° to CA @ 15.90; Qtz/Kfs/Bi/Cal vein (4cm) @ 80° to CA @
				010 301	21.3-21.4; a return to patchy alt zone @ 37.05; com sulph veins
					(1mm) @ 20° to CA btwn 37.05-37.6; patchy silicified alt btwn
					37.6-42.0; J1 @ 45° to CA @ 45.2 mzd w/ Py/CP/AS & min PO;
		<u> </u>			
		 			mult shears @ 35° to CA @ 45.4 w/ 4mm qtz vein, mzd a/a
	47	47.3	0.0	12B SHD	Sheared Quartz Diorite: fine-med grained; pervasively alt to Chl;
	4/	41.3	0.3	CHL4 PRV	shear @ 45° to CA; beginning to see blue quartz (hydrothermal)
		-			
		+		GS1 FOL4	mzd w/ Py/CP/AS w/ min PO
		 		PY CP PO	
		 		AS VNT	
	47.0		77	12D CC2	Quarter Digritar much alor w/ thin med above \$ 00° to CA htms
	47.3	55	1.7	12B GS2	Quartz Diorite: much a/a; w/ thin mzd shear @ 80° to CA btwn
		1		CRX POR	52.0-52.3; shear mzd w/ PY/CP
				CHL1 LOC	
				PY CP VLT	
		00.05	5.05	40D 011D	Observed Overde Dispitatty highly abserved arms a share Q 45°
	55	60.35	5.35	12B SHD	Sheared Quartz Diorite**: highly sheared zone; shears @ 45°
		1		CHL3 PRV	to CA; com PI augens; abn't silicification; mzd w/ 2-6% sulph
	<u> </u>			GS1 FOL4	along shears and w/in Qtz veins; Qtz veins @ 45° to CA (com),

Hole ID: CSM-WH-12-05	From	То	Length(m)	Code	Comments
				SIL V3S	80° (minor), & 60° (rare); mzd w/ Py/CP/PO/AS/Au; gy/wh Qtz
				PY CP PO	vein @ 45° to CA btwn 58.0-58.8 hosts Au @ 58.3 & 58.4 (6-8
				AS AU2	specks); pegmatitic Bi/Cal patch @ 60.2; trace blue qtz @ 60.3
				VNT CTG	
				BLB DIS	
	60.35	82.65	22.3	12B/13 GS2	Quartz Diorite to Quartz Monzonite: Qtz Monz towards contacts;
				CRX POR	light (It) grey/pink/blk; med-crs grained w/ crs grained
				CHL1 LOC	PI/Kfs phenocrysts w/ occ Qtz blebs; PI (40%), Kfs (40%),
				BLE V3S	Bi (10%), Amph (5%), & Qtz (5%); J1 @ 45° to CA @ 67.4, mzd
				PY CP	w/ Py/CP; mzd vein of Py/CP @ 20° to CA @ 68.1; mod shear
				DIS CTG	@ 70° to CA btwn 72.0-72.2; Qtz/Kfs vein (1cm) @ 35° to CA @
					73.7 & 79.7; Kfs/Qtz alt/blchd vein (2cm) @ 20° to CA @ 75.0
	82.65	87.15	4.5	12B SHD	Sheared Quartz Diorite*: intensely sheared @ 45° to CA; highly
				CHL4 PRV	alt to Chl; com blue quartz eyes; com thin qtz/carb veinlets @
				GS1 FOL4	70°/ 45° to CA; mzd (2-3%) w/ Py/CP/PO/AS along shd planes;
				V2S JNT FRA	occ frac's @ 20° to CA lined w/ Cal or Py/CP; J1 @ 45° to CA
				PY CP PO	lined w/ Cal or Py/PO; becoming less intensely sheared towards
				VNT CTG	lower contact where original fabric becomes visible once again
	87.15	96.7	9.55	12B SHD/	Interlayered Sheared Quartz Diorite & Quartz Monzonite or
				13 or 12B	Quartz Diorite: non-sheared lithologies make up approx 25% of
				CHL3 PRV	this section; shear @ 45° to CA less mzd (2%), sulphides a/a;
				GS1/2 FOL3	blue Qtz eyes continue in sheared zones; mzd Qtz/Kfs/Bi/Cal
				EPD LOC	vein @ 35° to CA @ 89.7, sulphides incl Py/CP; distinctive
				V3S V2	Fe-stain'd epidote alt/frac/stockwork vein zone btwn 90.8-91.05;
				PY CP PO	com thin qtz/carb stockwork veins w/in epi zone; Qtz/Kfs vein
				VNT CTG	(1cm) @ 45° to CA @ 91.0; thin Qtz/Carb veins crosscut
					sheared zones @ 70°, 80°, 45°, & 65° to CA; carb vein (1.5cm)
					@ 70° to CA @ 96.1
_	96.7	151.05	54.35	12B GS2	Quartz Diorite: much a/a; w/ Kfs/Qtz vein (1cm) @ 35° to CA @
				CRX POR	99.9; J2 @ 40° to CA; Sil/Alt Kfs vein near healed frac @ 35° to
				CHL1 LOC	CA @ 116.05 & 117.9; Qtz vein @ 70° to CA @ 150.0, I-lateral
				SIL LOC	fault displaces vein by 0.5cm; fault x-cut by non-displ thin shear
				SHD LOC	@ 20° to CA, thin shear is mzd w/ Py/CP; shear @ 45°/20° to
				JNT FLT	CA @ 148.8; small shear @ 40° to CA @ 150.2
EOH		151.05			

CSM-WH-12-06 Drill Hole No.: Line Elev. 253m Azimuth 315 Contractor: Cabo Drilling Angle -45 System: Metric UTM Logged By: J. Davies 15N Length 115m Easting 337703 Logged: Oct 17-18, 2012 5511329 Core Size NQ Northing Started 14-Oct-12 Twp Province Manitoba Finished 16/10/2012 Property WestHawk NTS 52E Claim No. ML-018 Casing Left: YES

Casing Len.	ILO
Core Stored At:	CSM


Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	164.5	5705
Single	55	-44.3	165.8	5713
Shot	100	-44.3	166.4	5722

^{**}using 1 E declination (added to instrument reading)

Hole ID: CSM-WH-12-06	From	То	Length(m)	Code	Comments
CSM-WH-12-06	0	1.5	1.5	CS	Casing
@45°					
Oct.14, 2012	1.5	31.5	30	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
				CRX POR	fresh (F) and pinkisk & blk on weathered (W) surfaces; med-
				CHL1 LOC	occasionally (occ) coarse (crs) grained, equigranular (eqgr)
					to occ. porphyritic with plagioclase (PI) phenocrysts; PI (65%),

Hole ID: CSM-WH-12-06	From	То	Length(m)	Code	Comments
					biotite (Bi) (25%), amphibole (Amph) (5%), & quartz (Qtz) (<5%);
					Bi com altered (alt) to chlorite (ChI); Bi com lining oblique
					fractures (frac's) which are typically 55 degress to core axis (CA)
	31.5	31.9	0.4		Qtz Monzonite- Qtz Diorite med graimed grey-greenish
					fresh rel unaltered small ,3cm shear @60 degrees to CA
					tr ace of sulphides
	31.9	49	17.1	12B GS1/2	Sheared Quartz Diorite: dark (drk) green (gn) on Fr & We
				SHD2 V3S	surfaces; fine (avg)- med grained; eggr- augen porphyroblastic;
				CHL4 PRV	strong alt to Chl, sericite (Ser), & silicified; < 2.5mm
				FOL3 FRA	shear planes oriented 55° to CA; mineralization increasing
				PY PO CP	med grained Feldspar augens concentrated along shear planes;
					mineralized (mzd) with (w/) 1-2% fine (avg) -med grained
					sulphides including pyrite pyrrhotite & chalcopyrite,
					sulphides com occur along shear planes as veinlets,
					disseminated (dissem) or scattered within (w/in) groundmass
					(gm), or as coatings along frac planes, random orientation to grains
	49	49.8	0.8	PY	Qtz Monzonite- Qtz Diorite med graimed grey-greenish
					as describe above mod alteration of Feldspars
					2-3cm shears @65 degrees to CA
					trace to 1% sulphides
	49.8	74.5		12B GS2	Quartz Diorite: as described in upper part of hole w/ only 3-6% Kfs,
				CRX POR	however sporadic Kfs veins throughout @ 30° to CA @ 59.5 &
				CHL1 LOC	30.75; Chl alt patch @ 25 in assoc w/ a Chl vein @ 50° to CA
				PAT V3	w/ sulphides alonf Chl vein; Py, CP, PO also along frac's
				PY CP PO	@ 50° to CA in assoc w/ a thin Qtz/Cal vein @ 45° to CA @ 33.8
				100.00-	
	74.5	105		12B GS2	Quartz Diorite with Zones of Sheared Quartz Diorite
				CRX POR	has minor to no Kfs; sheared zone are nicely mineralized (2-5%)
				CHL1 LOC	w/ minor qtz veins 74.75 is a 3-4cm wide vein @ 40° to CA;
				12B GS1	Sheared areas Chl alt veins present in a series @ 45° to CA
				SHD3 V3S	& cross-cut thin Qtz/Carb/Chl veins surrounding vert
				CHL4 PRV	frac @ 30° to 40° to CA @ 89.5 Chl vein shear,
				FOL FRA	& Qtz/Carb veins are mineralized with Py, PO, AS,
	<u> </u>			PY PO	shear area filled with PO, and minor Py @ 92.4

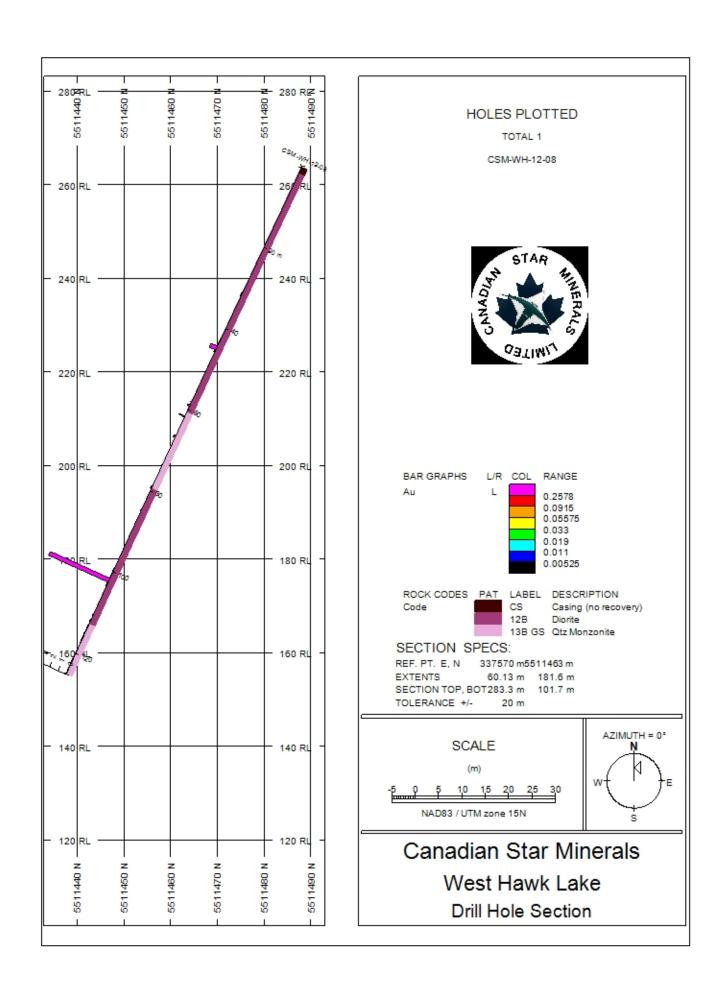
Hole ID: CSM-WH-12-06	From	То	Length(m)	Code	Comments
		·		AS DIS	80° to CA sub vertical from 94.5-96.0; ASPY zone
				CTG SCT	high temperature environment indicator is present
					from to 44.9; towards lower contact of section,
	$oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}}}}}}}}}}}}}}}}}}}} $				increasingly thicker interlayers of Qtz Diorite, but w/
					continuing 5-10cm thick sheared zones w/ sub-horiz
					frac's/shears lined w/ sulphides
	ſ <u></u>				
	105	5 115	, 20	0 12B 13	Quartz Diorite with little to no shearing or alteration
	<u> </u>			GS2 CRX	little no no visible sulphides (if present are very finely dissem),
·					minor amount tr-1% fine grained Py @ 106.8
	<u> </u>				Hydrothermally altered Quartz Diorite: BARRENtowards the bottom of hole,
	ſ'				minor Chlorite
EOH		115	,		

Drill Hole No.: CSM-WH-12-07 Line Elev. 253m Azimuth 135 Contractor: Cabo Drilling Angle -45 System: Metric UTM Logged By: B. Duncan 15N Length 91m Easting 337562 Logged: Oct 22-23, 2012 5511490 Core Size NQ Northing

 Twp
 Province Manitoba
 Started Finished
 20/10/2012

 Property
 WestHawk
 NTS
 52E

Claim No. ML-018 Casing Left: YES Core Stored At: CSM


Type	Depth	Angle	True Az	Mag
Flexit	6	-45.0	135.0	5710
Single	52	-45.1	136.3	5720
Shot	91	-44.3	138.2	5745

Hole ID: CSM-WH-12-07	From	То	Length(m)	Code	Comments
CSM-WH-12-07	0	0.5	0.5	CS	Casing
@45°					
	0.5	44.7	44.2	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
Oct. 21, 2012				CRX POR	fresh (F) and peach & blk on weathered (W) surfaces; med-
				CHL1 LOC	occasionally (occ) coarse (crs) grained, porphyritic with
				JNT V3	plagioclase (PI) phenocrysts; PI (70%), amphibole (Amph)

Hole ID: CSM-WH-12-07	From	То	Length(m)	Code	Comments
				SHD1 PY	(25%), & quartz (Qtz) (5%); Amph occ altered (alt) to chlorite
				VLT CTG	(Chl); joint (J)1: 25° to core axis (CA) @ 4.2, lined w/ Fe-oxide;
					Qtz vein (1-2mm) @ 45° to CA @ 5.0 & 35.6; alloclastic basalt
					breccia crosscut by Qtz & Amph stockwork veins (0.5cm), @
					35°/10° to CA from 15.8 to 16.0, irregular contact; milky grey Qtz
					vein @ 30° to CA @ 20.8; mineralized (mzd) shear @ 10° to CA
					@ 27.2, mzd with (w/) Pyrite (Py)
	44.7	45.5	0.8	12B GS2	Quartz Monzonite: pink/black/lt.grey on fresh surface; med
				CRX POR	grained; PI (40%), Kfs (30%), Amph (25%), Qtz (5%); sulphide
				CHL1 LOC	mineralization of Py/CP/PO disseminated throughout
				SHD1 V2	groundmass (1-2%), thin mzd shear (a/a) @ 25° to CA @ 44.2;
				PY CP PO	Qtz/carb vein @ 35° to CA @ 44.35 & @ 55° to CA @ 45.5
				DIS VLT	
	45.5	46.4	0.9	12B GS1/2	Sheared Quartz Diorite: dark (drk) green (gn) on F surfaces;
				SHD2 FOL2	fine (avg)- med grained w/ Fs & blue Qtz augen porphyroblasts;
				CHL4 PRV	pervasively (prv) alt to Chl; med grained Fs/Qtz augens
				BQE PFB	concentrated along shear planes; shear @ 30° to CA assoc w/
				V2 V3	thin Qtz & Qtz/Carb veins; mzd w/ 1-2% fine (avg)-med
				PY CP PO	grained sulphides (incl) Py, chalcopyrite (CP), pyrrhotite (PO), &
				AS DIS VLT	arsenopyrite (AS), mzn along shear planes as veinlets,
					disseminated (dissem) or scattered within (w/in) groundmass
					(gm), scattered grains are typically (typ) med grained rather than
					fine (f) grained; upper contact @ 20° to CA; shear intensity
					decreases towards lower contact
	46.4	54.9	8.5	12B 13	Quartz Monzonite & Quartz Diorite: slightly coarser grained
				GS2 CRX	overall than prev described units, but less Kfs than prev unit;
				POR V3	Qtz/Kfs vein @ 20° to CA @ 49.2 & 35° to CA @ 49.8; J1=70°
				CHL1 LOC	to CA @ 49.9, mzd w/ CP; small shear @ 30° to CA @ 53.8;
				SHD1 LOC	Qtz vein (3mm) @ 40° to CA @ 54.4
	54.9	58	3.1	13 12B	Interlayered Quartz Monzonite & Sheared Quartz Diorite/
				SHD CHL4	Monzonite**: shear @ 35° to CA @ 55.4 & 56.3 (10-20cm), mzd
				PRV GS1/2	w/ Py along veinlets; crosscutting shears & carbonate veins mzd
				FOL4 SIL	w/ Py/CP/AS @ 55.7; mzd Qtz vein @ 15° to CA @ 55.95
				V3S V2 V1	w/ Py/CP/AS/molybdenite (MO); Qtz/Bi/Carb & AS mzd vein @
				PY CP PO	45° to CA @ 56.2; sheared & mzd Qtz/Kfs vein @ 40° to CA @
				AS MO AU2	45.5 to 46.5; intensely sheared/silicified zone btwn 56.8-58.0;
				VLT CTG	grey Qtz veins @ 20° & 45° to CA @ 56.6, the 20° to CA vein is
				DIS BLB	mzd w/ CP or lined w/ carbonate; carb veins w/in shear @ 30° to

Hole ID: CSM-WH-12-07	From	То	Length(m)	Code	Comments
					35° to CA @ 57.0; thick quartz vein @ 25° to CA @ 57.4-57.8
					mzd w/ Py/CP/PO/AS/AU**; 7 specks of visible gold; shear
					intensity decreases in lower 10cm of sheared unit @ 58.0
					·
	58	70.3	12.3	12B 13	Quartz Diorite to Quartz Monzonite: much a/a w/ mzd (Py/CP)
				SHD CHL3	Qtz/Kfs/Bi/Carb vein @ 45° to CA @ 60.1; Kfs vein @ 35° to CA
				PRV GS2/1	@ 59.9; shear @ 45° to CA @ 60.0 & 20° to CA @63.0 mzd a/a;
				FOL3 JNT	J3 @ 15° to CA @ 63.9, coated w/ mzn a/a; more sheared from
				SIL LOC	63.0-64.4; shear @ 30° to CA @ 67.0 & 67.5; Kfs/Qtz vein &
				V3S V2 V1	silicified alt zone (2.5cm) @ 30° to CA @ 66.2
				PY CP VLT	
				DIS CTG	
				BLB	
	70.3	73.3	3	12B SHD 13	Interlayered Sheared Quartz Diorite & Quartz Monzonite: a/a
				GS1/2	fracture @ 30° to CA lined w/ Cal; Kfs vein @ 45° to CA @ 70.4
				CRX POR	displ left-laterally by 1cm; shears @ 30° to CA, mzd w/ Py/CP @
				CHL3 PRV	sheared zone at base w/ com Kfs augens
				BQE PFB	
				FLT FRA	
				V3 PY CP	
				DIS CTG	
	73.3	80.3	7	12B SHD4	Sheared Quartz Diorite: shear @ 35° to CA, intense such that
				CHL4 PRV	host rock is no longer recognizable, massive appearance; thin
				EPI LOC	Qtz veins @ 45° to CA in assoc w/ shears; shears mzd w/ 2-3%
				V3S V2 V1	Py/CP/PO; J4 @ 65° to CA lined w/ Py/CP/PO & carbonate;
				FOL FRA	shear orientation varies and is ~50° to CA in places; highly alt to
				PY CP PO	Chl, some patchy alt near Chl/Carb veins; AS visible in shear
				AS VLT	@ 75.6; Qtz/carb veins @ 45° to CA @ 75.8; healed frac @ 20°
				DIS CTG	to CA (irregular) @ 74.6; Qtz/Kfs/Bi/Carb vein @ 20° & 30° to
					CA @ 76.8, mzd w/ Py/PO, & w/ Chl alt clots; hydrothermal
					epidote alt/hair line frac zone btwn 77.4-77.6 @ 40° to CA,
					assoc w/ carb veins (host rock less sheared in this zone);
					Qtz/Kfs/Chl veins @ 45° to CA @ 79.35, these veins com until
					lower contact
	80.3	83		12B SHD3	Interlayered Sheared Quartz Diorite & Quartz Monzonite: a/a,
				13 GS1/2	less sheared than above; blue quartz eyes becoming more com;
				CRX POR	epidote alt zone @ 35° to CA @ 82.1 & 82.5; frac @ 10°-20° to
				CHL3 PRV	CA @ 82.3, irregular and epidote lined
				EPI LOC	
				BQE PFB	

Hole ID: CSM-WH-12-07	From	То	Length(m)	Code	Comments
				FOL FRA	
				V3S V2 V1	
				PY CP PO	
				AS DIS CTG	
	83	85.9	2.9	12B SHD4	Intensely Sheared Quartz Diorite: much a/a but less mzd (1%);
				CHL4 PRV	com carb veins @ 45° to CA, mzn if any is finely dissem, w/in
				EPI LOC	shears; lower contact is a crenulated shear @ 45° to CA
				V3S V2 V1	
				FOL FRA	
				PY DIS VLT	
	85.9	91	5.1	13 GS2	Quartz Monzonite: much a/a, irreg frac @ 60° to CA mzd w/ Py;
				CHL1 LOC	Kfs vein (0.5cm) @ 45° to CA @ 87.0; J1 @ 45° to CA @ 87.7,
				V1 FRA JNT	J2 @ 35° to CA @ 88.0, J3 @ 20° to CA @ 90.9, all lined w/
				PY CTG DIS	carb/epidote and contain traces of Py mzn
EOH		91			

Drill Hole No.: CSM-WH-12-08 Line Elev. 253m Azimuth Contractor: Cabo 145 Drilling Angle -60 System: Metric UTM Logged By: B. Duncan 15N Length 125m Easting 337550 Logged: Oct 24-25, 2012 5511488 Core Size NQ Northing Started 22/10/2012 Twp Province Manitoba Finished 23/10/2012 Property WestHawk NTS 52E

Casing Left: YES
Core Stored At: CSM

Туре	Depth	Angle	True Az	Mag
Flexit	6	-60.0	145.0	5725
Single	61	-60.1	143.7	5731
Shot	125	-60.6	144.2	5737

**using 1 E declination (added to instrument reading)

ML-018

Claim No.

Hole ID: CSM-WH-12-08	From	То	Length(m)	Code	Comments
CSM-WH-12-08	0	1.7	1.7	CS	Casing
@60°					
	1.7	18.3	16.6	12B GS2	Quartz Diorite: medium (med) grey (gr) & black (blk) on
Oct. 22, 2012				CRX POR	fresh (F) and peach & blk on weathered (W) surfaces; med-
				CHL1 PAT	occasionally (occ) coarse (crs) grained, porphyritic with
				SIL EPD LOC	plagioclase (PI) phenocrysts; PI (70%), amphibole (Amph)

Hole ID: CSM-WH-12-08	From	То	Length(m)	Code	Comments
				JNT FRA	(25%), & quartz (Qtz) (5%); Amph occ altered (alt) to chlorite
				V3 V2 AS	(Chl); basalt clast (or alteration (alt) patch?) (20cm) @ 45° to CA,
				PY CP PO	dark green/blk, aphanitic, pervasively alt to Chl, subangular,
				DIS CTG	mineralized (mzd) with (w/) Pyrite (Py), Chalcopyrite (CP), &
					Pyrrhotite (PO); Qtz vein along irregular fracture (frac) @ 10° to
					CA @ 10.9, mzd as above (a/a); joint (J)1 @ 35° to CA @ 4.0
					lined w/ epidote (Epd) and carbonate (Carb); J2 @ 20° to CA
					lined w/ Epi and iron oxide (Fe-O) @ 8.3; round alt patch (45cm)
					(basalt clast?, Kfs phyric host rock groundmass (GM) apparent)
					@ 30° to CA assoc w/ shears @ 18.2, mzd a/a, Kfs vein
					crosscuts ChI alt green alt patch @ 10° to CA @ 18.3
	18.3	34	15.7	12B GS2	Quartz Diorite w/slightly more Kfs: more Kfs in GM and in veins;
				CRX POR	Kfs/Qtz vein @ 45° to CA @ 19.9; Qtz/Kfs partial vein @ 24.3
				BQE PFB	along a joint @ 20° to CA; Qtz/Kfs/Carb vein @ 20° to CA along
				CHL1 LOC	a joint @ 25.6, mzd w/ Py/arsenopyrite (AS); Kfs/Silicified (Sil) alt
				SHD1 LOC	vein (4cm) @ 70° to CA @ 28.5; Kfs vein (0.5cm) @ 45° to CA
				SIL EPD LOC	@ 29.2, mzd w/ Py; Kfs/Sil alt veins (2-3cm) @ 80° to CA @
				JNT FRA FLT	29.85 & 29.9; Qtz vein/Chl shear @ 20° to CA @ 30 & 30.1, mzd
				V2 V3 V3S	w/ Py/CP/PO/AS; Kfs/Qtz vein left-laterally offset by 0.5-1cm,
				PY CP PO	likely originally @ 70° to CA @ 30.2, 30.3, 30.4 (1.5, 3, & 4cm),
				DIS VLT	shears @ 15° to CA appear to displace the Kfs veins, this zone
					is contains blue quartz eyes & is mzd w/ Py/CP/PO/AS; Qtz/Kfs
					vein (0.5cm) @ 70° to CA @ 31.9, @ 40° to CA @ 33.8, & a
					similar (3.5cm) vein @ 75° to CA @ 34.0
	34	42.3	8.3	12B GS2	Quartz Diorite: much as first described, but w/ occ milky grey
				CRX POR	sil alt quartz veins @ 45° to CA @ 38.6, (3mm) @ 20° to CA @
				CHL1 SIL	39.0 mzd w/ Py, & @ 40° to CA @ 40.4 & 41.0
				LOC V3S	
				V3 PY VLT	
	42.3	45.7	3.4	12B SHD3	Sheared Quartz Diorite**: dark (drk) green (gn) on F surfaces;
				CHL3 PRV	fine (avg)- med grained w/ Fs & blue Qtz augen porphyroblasts;
				GS1/2	pervasively (prv) alt to Chl; med grained Fs/Qtz augens
				BQE PFB	concentrated along shear planes; shear @ 20° to CA assoc w/
				V2	thin Qtz & Qtz/Carb veins; mzd w/ 1-2% fine (avg)-med
				PY CP PO	grained sulphides (incl) Py/CP/PO/AS along mod shear planes
				AS VLT	as veinlets, disseminated (dissem) or scattered within (w/in) GM;
				DIS SCT	Qtz/Carb vein @ 20° to CA@ 42.3 & 42.45
	45.7	53.1	7.4	12B GS2	Quartz Diorite: much as first described, but w/ milky grey
				CRX POR	sil alt quartz veins (1cm) @ 25° to CA @ 53.0

Hole ID: CSM-WH-12-08	From	То	Length(m)	Code	Comments
			• , ,	CHL1 SIL	
				LOC V3	
					Interlayered Sheared Quartz Diorite & Quartz Diorite: a/a, but w/
	53.1	60.6	7.5	12B SHD2/	thin shears scattered throughout; blue Qtz beyond 57.6; shear
				12B CHL2	(2cm) @ 35° to CA @ 53.1 & (5cm) @ 30° to CA @ 54.5 mzd w/
				SIL LOC	Py/CP/PO/AS; Kfs/Qtz vein (2cm) @ 20° to CA @ 56.3 (no mzn)
				GS1/2 FOL3	shears @ 20° to CA @ 57.6 (10cm), 58.5 (1cm), 59.0 (3cm) &
				CRX POR	59.3 (2cm); shear @ 25° to CA @ 58.0 (2cm); shear @ 45° to
				BQE PFB	CA @ 59.2 (3cm), sheared zones mzd a/a
				PY CP PO	
				AS VLT	
				DIS CTG	
	60.6	79.4		12B SHD/	Quartz Monzonite to Quartz Diorite: pink/black/lt.grey (F); med-
				13 GS2	crse grained; PI (40%), Kfs (30%), Amph (25%), Qtz (5%); PI/Kfs
				CRX POR	phyric; Fe-stained Kfs/Bi.Carb vein (3cm) w/in (10cm) shear @
				CHL1 LOC	30° to CA @ 61.4, mzd w/ Py/CP/PO/AS; J1 @ 30° to CA @
				EPD LOC	62.7 lined w/ Epd/Carb; shear (25cm) @ 35° to CA @ 65.3 w/
				SHD2 LOC	2-3% sulphide mzn (Py/PO/CP/AS); Chl alt vein @ 35° to CA @
				V2 V3	65.5; shear @ 35° to CA @ 68.6 (2cm), @ 25° to CA @ 69.1
				PY CP PO	(2cm) & 70.1 (3cm), all mzd a/a; Qtz/Kfs vein (1cm) w/in (3cm)
				AS DIS	shear @ 25° to CA @ 70.1, mzd a/a; Kfs vein (3cm) @ 35° to CA
				CTG VLT	@ 74.2; shear (30cm) @ 25° to CA @ 78.8, mzd, sil w/ (1cm)
					Qtz/Kfs/Bi/Cal vein @ 79.1; Kfs-rich Granite patch @ 79.2-79.3
	79.4	112.7	33.3	12B GS2	Quartz Diorite: much as first described, shear (2cm) @ 20° to CA
				CRX POR	@ 81.2 alt to Chl, mzd w/ Py, Qtz/Kfs/Chl vein in center; shear
				CHL1 SHD1	@ 20° to CA @ 81.9 (1cm) & 84.6 (4cm), @ 35° to CA @ 84.1
				BLE LOC	(2cm), all mzd w/ Py/CP/PO/AS; Kfs/Bi vein @ 45° to CA @ 86.2
				V3 V2	& 87.2; shear @ 20° to CA @ 94.0 (2cm) w/ Qtz/Kfs/Bi/Cal vein
				PY CP PO	mzd w/ Py; shear @ 20° to CA @ 94.6 (3cm); Qtz/Kfs/Bi vein @
				AS VLT	45° to CA @ 96.0 (1.5cm); shear @ 25° to CA @ 98.8 (20cm),
				CTG DIS	@ 20° to CA @ 101.2 (bleached, little to no mzn, 30cm) & 102.2
					(40cm) all (except bleached) mzd w/ Py/CP/PO/AS; J1 @ 25° to
					CA @ 102.7 coated w/ mzn a/a; shear @ 20° to CA @103.9
					(10cm) & @ 110.3 (15cm), both mzd a/a
	112.7	124.2	11 5	12B/13	Sheared Quartz Diorite/Monzonite: shear @ 45° to CA @ 112.7
	112.7	127.2	11.5	SHD4 GS1/2	(8cm); non-sheared zones becoming more feldspathic beyond
				CHL4 PRV	112.8; shear orientation shifts; Py dissem in Qtz Monzonite w/
				EPI LOC	blue quartz eyes in places; Chl shear mzd w/ Py/PO/AS;
				V3S V2 V1	Qtz/Kfs/Bi/Cal vein @ 45° to CA @ 113.5; Carb/Chl vein @ 35°
	I			V 0 0 V Z V I	Take the section of the transfer to the transf

Hole ID: CSM-WH-12-08	From	То	Length(m)	Code	Comments
				FOL FRA	to CA @ 116.2; small shear with the HR fabric obliterated @ 20°
				JNT STK	to CA @ 116.5, intense shear w/ less mzn (<1%) @ 45°(maj)/30°
				BQE PFB	(min) to CA @ 118.3; slightly more mzd, less intense shear than
				PY CP PO	above w/ com Qtz/Carb veins & some blue quartz eyes beyond
				AS VLT SCT	this point @ 40° to CA @ 119.0; frac @ 20° to CA @ 119.8 lined
				DIS CTG	w/ Chl/Carb/Epd; stockwork Epd/Carb/Chl veins (some @ 25° to
					CA @ 120.0-120.4; J1 @ 45° to CA @120.5 lined w/ Carb; Carb
					vein @ 35° to CA @ 121.0; drusy Qtz/Carb vein @ 45° to CA @
					121.5 w/ 2-3% sulphides in this zone to end of shear unit;
					brecciated & healed frac/shear (stockwork-like) @ 45° to CA @
					121.6-121.8 w/ Fe-stained PI & Epd alt; Qtz/Kfs/Bi/CArb vein @
					45° to CA @122.0 w/ Py/PO/AS mzn; shear w/ recognizable host
					rock fabric @ 35° to CA @ 122.1; Fe-stained Qtz/Kfs/Bi/Carb
					vein (2cm) @ 35° to CA @ 122.3; less sheared zone from
					122.55-123.2; shear @ 15° to CA @ 123.2-124.2 mzd a/a
	124.2	125	0.8	13 GS1/2	Quartz Monzonite: a/a, less sheared than above; blue Qtz eyes
				CRX POR	continue; shear @ 20° to CA @ 124.4
				CHL1 LOC	
EOH		125		BQE PFB	

APPENDIX V

Assay Certificates

Phase I Drill Program

CLIENT NAME: CANADIAN STAR MINERALS LTD 129 MIDLAND AVENUE SCARBOROUGH, ON M1N3Z8 (416) 261-6149

ATTENTION TO: CHRIS NORTH

PROJECT NO: WEST HAWK LAKE

AGAT WORK ORDER: 12U664020

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, ICP Supervisor

DATE REPORTED: Dec 04, 2012

PAGES (INCLUDING COVER): 47

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES	

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish	(201073)					
DATE SAMPLED: No	v 16, 2012			ATE RECE	EIVED: Nov	14, 2012		DATE F	REPORTED): Dec 04, 2	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
L904101		7.0	1.17	3	41	181	1.0	4	1.24	<0.5	45	36.5	115	7360	6.01
L904102		<0.2	1.08	213	16	74	1.4	<1	0.74	<0.5	128	7.8	33.7	80.6	2.15
L904103		<0.2	1.17	453	17	78	1.4	<1	0.85	<0.5	116	7.8	34.4	31.8	2.25
L904104		0.4	0.90	355	17	63	0.9	<1	0.74	0.7	108	9.8	25.5	34.3	2.38
L904105		<0.2	1.07	77	15	81	1.3	<1	0.81	<0.5	116	7.3	29.1	18.0	2.21
L904106		<0.2	1.10	46	16	82	1.4	<1	0.74	<0.5	118	7.5	32.7	13.6	2.17
L904107		<0.2	1.15	48	16	83	1.4	<1	0.80	<0.5	120	7.6	30.8	10.0	2.25
L904108		<0.2	1.13	46	15	81	1.3	<1	0.90	<0.5	120	7.2	32.0	10.3	2.20
L904109		0.3	0.94	79	16	66	1.1	<1	0.91	<0.5	115	7.9	29.6	15.9	2.08
L904110		<0.2	1.03	34	16	76	1.4	<1	0.75	<0.5	124	7.1	32.6	16.1	2.10
L904111		<0.2	1.00	9	15	68	1.3	<1	0.49	<0.5	117	6.9	27.8	7.1	2.17
L904112		<0.2	0.99	14	15	67	1.4	<1	0.50	<0.5	120	7.3	31.5	8.5	2.13
L904113		<0.2	0.99	14	14	69	1.4	<1	0.52	<0.5	112	7.1	27.6	20.2	2.13
L904114		<0.2	1.10	37	16	77	1.4	<1	0.89	<0.5	124	6.8	31.9	27.8	2.16
L904115		<0.2	1.06	68	17	79	1.4	<1	0.75	0.7	124	8.1	32.5	23.5	2.26
L904116		<0.2	1.03	22	16	76	1.4	<1	0.56	<0.5	104	6.9	32.0	13.5	2.06
L904117		<0.2	1.06	59	16	77	1.2	<1	0.92	<0.5	113	7.6	29.7	26.0	2.15
L904118		<0.2	1.05	22	16	77	1.3	<1	0.62	<0.5	113	6.9	32.1	13.9	2.04
L904119		<0.2	1.09	59	16	78	1.4	<1	0.96	<0.5	121	7.7	33.7	22.2	2.19
L904120		<0.2	1.12	29	16	81	1.4	<1	0.71	<0.5	117	8.0	34.3	31.5	2.26
L904121		<0.2	1.05	24	16	76	1.4	<1	0.68	<0.5	111	7.1	30.9	30.0	2.18
L904121A		8.0	1.76	9	40	93	4.1	4	1.02	<0.5	24	15.6	56.6	37.5	5.74
L904121B		0.5	0.02	<1	19	65	<0.5	<1	20.7	<0.5	<1	<0.5	1.6	2.2	0.04
L904122		<0.2	0.92	11	13	57	1.3	<1	0.59	<0.5	110	6.0	26.5	13.0	1.96
L904123		<0.2	1.01	10	14	73	1.3	<1	0.80	<0.5	112	6.3	29.2	9.0	2.04
L904124		<0.2	0.95	50	15	62	1.3	<1	0.76	<0.5	118	6.3	29.4	16.5	1.94
L904125		<0.2	1.00	105	14	69	1.2	<1	0.82	0.6	111	6.8	30.6	24.7	1.97
L904126		<0.2	1.04	23	16	69	1.4	<1	0.71	<0.5	125	7.1	30.4	26.2	2.18
L904127		<0.2	1.09	27	16	77	1.4	<1	0.73	<0.5	115	7.3	32.1	12.1	2.17
L904128		<0.2	1.04	22	16	75	1.4	<1	0.72	<0.5	117	7.2	31.5	14.8	2.12
L904129		<0.2	1.05	8	17	74	1.4	<1	0.59	<0.5	113	7.2	31.6	8.6	2.15
L904130		0.3	1.02	19	15	77	1.4	<1	0.68	<0.5	112	7.3	30.0	20.3	2.11

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

http

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: CANADIAN STAR MINERALS LTD ATTENTION TO: CHRIS NORTH

CEIEITI IVIVIE. O/				a Regia	Digest -	Metals P	ackane	ICP-OF	S finish	(201073)					
DATE SAMPLED: No	v 16, 2012		<u> </u>	DATE RECE			aonago,): Dec 04, 2		SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe
	Únit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
L904131		<0.2	1.12	25	17	88	1.5	<1	0.73	<0.5	121	8.1	37.9	25.2	2.29
L904132		0.2	1.08	34	17	82	1.4	<1	0.83	<0.5	116	7.9	32.6	42.6	2.27
L904133		0.3	1.14	20	21	84	1.5	<1	1.07	<0.5	121	8.1	35.8	53.2	2.32
L904134		<0.2	1.11	21	16	81	1.5	<1	0.71	<0.5	122	7.6	42.5	12.7	2.28
L904135		<0.2	0.92	28	14	63	1.2	<1	0.79	<0.5	119	7.2	26.2	17.7	2.08
L904136		<0.2	0.97	35	14	66	1.3	<1	0.79	<0.5	115	7.0	39.5	16.1	2.04
L904137		0.3	0.98	39	16	69	1.2	<1	0.96	<0.5	110	7.6	30.5	19.0	2.23
L904138		0.3	0.99	16	16	73	1.3	<1	0.76	<0.5	117	7.6	37.6	24.0	2.29
L904139		0.3	1.06	40	16	82	1.4	<1	0.82	<0.5	113	7.1	37.3	32.9	2.17
L904140		<0.2	1.03	13	15	81	1.4	<1	0.63	<0.5	108	7.3	37.2	10.1	2.21
L904141		<0.2	1.07	10	15	85	1.4	<1	0.63	<0.5	110	7.7	35.2	15.3	2.15
L904141A		0.7	1.38	7	30	53	3.1	1	0.81	<0.5	19	13.0	45.3	29.8	4.43
L904141B		0.4	0.02	<1	28	28	<0.5	<1	18.1	<0.5	<1	<0.5	1.9	8.0	0.05
L904142		<0.2	1.10	18	14	81	1.4	<1	0.72	<0.5	104	6.9	35.3	21.3	2.20
L904143		<0.2	1.00	30	14	72	1.2	<1	0.73	<0.5	105	6.9	31.7	15.0	1.98
L904144		<0.2	0.99	38	14	71	1.2	<1	0.69	<0.5	112	7.6	31.7	24.9	2.04
L904145		0.4	0.95	42	15	72	1.1	<1	0.78	<0.5	115	7.9	28.1	25.3	2.17
L904146		0.4	1.07	52	15	77	1.3	<1	0.75	<0.5	118	7.1	39.3	36.9	2.18
L904147		0.4	1.06	82	16	83	1.2	<1	0.72	<0.5	114	8.1	29.4	36.5	2.21
L904148		0.4	1.01	87	17	75	1.2	<1	0.75	0.5	112	7.9	29.8	33.5	2.19
L904149		<0.2	1.02	98	16	80	1.0	<1	0.77	<0.5	111	8.0	38.2	23.3	2.11
L904150		0.2	0.84	81	15	59	0.8	<1	0.82	<0.5	110	8.1	29.8	19.2	1.97
L904551		<0.2	1.80	1170	27	132	2.3	<1	1.89	0.8	207	15.2	84.2	21.0	3.74
L904552		<0.2	2.20	15	34	184	2.7	<1	2.24	0.6	217	13.8	86.5	19.0	4.13
L904553		<0.2	2.51	23	32	146	2.6	<1	3.16	0.7	167	21.0	221	2.7	4.24
L904554		<0.2	3.34	17	30	240	2.3	<1	0.72	0.6	50	26.3	502	1.3	4.12
L904555		0.6	1.84	190	26	152	2.4	<1	1.21	<0.5	203	16.1	87.0	76.9	4.03
L904556		<0.2	1.55	5480	28	118	2.1	<1	1.14	<0.5	213	16.1	74.2	44.5	3.69
L904557		<0.2	1.52	2370	25	89	2.0	<1	1.29	<0.5	218	17.9	77.4	56.5	3.91
L904558		<0.2	1.86	1680	31	119	2.7	<1	1.41	0.7	252	18.5	82.2	60.4	4.14
L904559		<0.2	1.67	226	27	113	2.7	<1	1.46	<0.5	229	16.7	77.4	61.0	3.91
L904560		<0.2	2.00	31	31	178	2.6	1	2.01	0.6	227	14.1	75.7	22.2	3.87

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD ATTENTION TO: CHRIS NORTH

			Aq	ua Regia	Digest -	Metals P	ackage,	ICP-OE	S finish	(201073)					
DATE SAMPLED: No	v 16, 2012			DATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED): Dec 04, 20	012	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
L904561		<0.2	2.20	2200	30	193	2.4	<1	1.42	0.6	220	20.6	151	66.0	4.14
L904562		<0.2	2.09	296	30	183	2.8	<1	2.07	8.0	299	15.3	83.4	21.4	4.15
L904563		0.3	0.45	8	16	62	1.8	<1	1.12	<0.5	163	5.0	88.2	218	1.93
L904564		1.2	1.10	2	23	61	2.2	1	0.88	<0.5	154	9.3	108	728	3.40
L904565		<0.2	1.50	52	24	113	2.1	<1	1.03	<0.5	188	11.9	44.9	60.9	3.16
L904566		0.3	1.77	163	24	149	2.4	<1	2.41	0.6	198	13.3	54.8	157	3.64
L904567		6.0	1.32	8270	20	78	1.3	3	0.99	<0.5	165	12.0	52.4	44.3	3.27
L904568		23.5	0.95	>10000	27	71	1.0	15	0.74	<0.5	107	9.2	37.1	59.7	4.28
L904568A		1.2	3.88	62	70	14	<0.5	7	1.48	0.8	8	48.1	127	242	9.45
L904568B		0.8	0.02	15	27	28	<0.5	<1	19.2	<0.5	<1	<0.5	2.0	1.1	0.06
L904569		1.1	1.39	8030	22	76	1.3	<1	1.09	0.6	151	13.0	55.1	37.9	3.14
L904570		0.5	1.56	>10000	25	81	1.7	<1	1.62	0.6	196	14.0	62.0	60.0	3.54
L904571		0.3	2.31	80	28	563	2.6	<1	2.53	0.6	107	26.9	270	55.7	3.96
L904572		0.3	2.25	30	27	675	2.5	<1	2.71	0.9	89	25.1	344	64.2	3.61
L904573		<0.2	2.60	28	30	573	3.0	<1	2.90	0.7	97	25.5	327	79.0	4.07
L904574		0.3	2.06	45	26	532	2.6	<1	2.27	0.7	97	23.8	206	70.5	3.60
L904575		0.5	1.08	301	16	96	1.3	<1	0.64	3.4	103	8.5	28.6	50.9	2.41
L904576		1.4	1.47	634	18	119	1.3	<1	1.22	0.7	102	9.5	89.3	370	2.49
L904577		0.9	0.88	28	13	72	1.1	<1	0.55	<0.5	93	6.4	43.2	228	1.75
L904578		<0.2	0.97	7	15	85	1.3	<1	0.41	<0.5	114	6.8	29.2	9.4	2.03
L904579		<0.2	1.16	15	16	99	1.4	<1	0.60	<0.5	114	7.3	40.7	22.4	2.21
L904580		<0.2	1.13	24	15	95	1.2	<1	0.80	<0.5	110	7.1	30.0	86.8	2.16
L904581		<0.2	1.16	25	17	94	1.4	<1	0.77	<0.5	122	7.4	38.9	20.2	2.24
L904582		<0.2	1.03	22	14	82	1.0	<1	1.23	<0.5	99	6.7	30.4	15.7	1.95
L904583		<0.2	1.16	41	16	105	1.2	<1	0.84	<0.5	114	7.2	37.3	11.0	2.17
L904584		<0.2	1.15	55	16	103	1.3	<1	1.19	<0.5	121	7.0	34.0	17.2	2.15
L904585		0.2	1.04	67	15	85	1.2	<1	0.73	0.6	114	7.5	34.7	20.3	2.23
L904586		<0.2	1.13	160	15	88	1.3	<1	0.82	<0.5	117	7.0	31.4	17.0	2.18
L904587		<0.2	1.14	55	15	95	1.3	<1	0.84	<0.5	122	7.2	36.4	16.7	2.17
L904588		<0.2	1.11	16	14	97	1.3	<1	0.60	<0.5	112	6.7	32.9	8.7	2.13
L904588A		1.8	3.08	6830	124	118	0.7	10	4.68	1.6	13	22.0	97.9	326	14.4
L904588B		0.7	0.03	3	24	29	<0.5	<1	19.2	<0.5	<1	<0.5	2.2	0.7	0.05

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

.AKE ATTENTION TO: CHRIS NORTH 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish ((201073)					
DATE SAMPLED: No	v 16, 2012		ı	DATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED): Dec 04, 20	012	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
L904589		<0.2	1.07	91	16	94	1.1	<1	0.91	<0.5	118	6.8	32.0	23.3	2.19
L904590		<0.2	1.02	19	14	81	1.2	<1	0.61	<0.5	112	7.2	27.4	11.9	2.01
L904591		<0.2	1.02	33	14	78	1.2	<1	0.58	<0.5	109	7.4	35.6	21.9	2.03
L904592		<0.2	1.13	20	15	88	1.2	<1	0.80	<0.5	114	7.3	32.9	18.5	2.20
L904593		<0.2	0.99	21	13	75	1.2	<1	0.56	<0.5	109	6.5	32.4	19.4	2.08
L904594		<0.2	0.98	10	13	81	1.2	<1	0.45	<0.5	111	6.9	29.2	9.5	1.99
L904595		<0.2	1.00	73	14	75	1.2	<1	0.56	<0.5	110	7.1	33.5	10.3	2.06
L904596		<0.2	0.92	15	13	68	1.3	<1	0.44	<0.5	112	6.5	24.5	14.8	1.94
L904597		<0.2	0.68	9	9	49	0.9	<1	0.32	<0.5	84	5.1	24.1	9.0	1.39
L904598		<0.2	0.91	15	14	70	1.3	<1	0.44	<0.5	117	6.7	27.6	19.2	1.99
L904599		<0.2	0.92	13	14	71	1.2	<1	0.41	<0.5	119	6.9	33.6	15.7	2.05
L904600		<0.2	1.09	582	14	83	1.2	<1	0.78	<0.5	109	6.0	31.0	16.5	2.11
L904651		<0.2	1.35	1350	20	127	1.7	<1	1.25	<0.5	163	11.5	44.5	52.0	2.93
L904652		<0.2	1.63	63	23	145	2.0	1	1.45	0.5	186	10.1	50.3	25.3	3.23
L904653		<0.2	1.65	908	22	145	2.0	<1	1.31	0.6	207	11.8	55.7	40.3	3.39
L904654		<0.2	1.50	4350	20	131	1.7	<1	1.50	0.5	180	14.1	44.4	63.3	3.30
L904655		<0.2	1.49	1920	23	129	1.8	<1	1.28	<0.5	182	17.3	51.7	41.1	3.12
L904656		<0.2	1.53	2230	23	122	1.8	<1	1.18	<0.5	188	14.5	52.1	61.1	3.48
L904657		<0.2	1.58	3090	24	117	1.8	<1	1.24	<0.5	198	14.4	60.8	90.0	3.58
L904658		0.6	1.33	4900	26	74	1.7	<1	1.43	<0.5	195	16.0	52.9	94.8	3.72
L904659		0.3	1.33	3810	18	97	1.4	<1	1.08	<0.5	164	12.2	53.1	53.9	3.34
L904660		<0.2	0.95	1160	13	79	1.2	<1	0.84	<0.5	117	7.3	35.1	55.5	2.09
L904661		<0.2	1.45	1410	23	114	1.8	<1	2.81	0.6	178	11.5	56.1	79.8	3.22
L904662		<0.2	1.48	5100	21	111	1.6	<1	0.87	<0.5	195	15.1	52.8	74.7	3.34
L904663		<0.2	1.81	73	28	152	2.3	<1	1.26	<0.5	197	14.3	61.6	46.6	3.78
L904664		<0.2	1.67	369	24	123	2.1	<1	1.27	<0.5	196	13.8	52.3	63.5	3.54
L904665		<0.2	1.70	224	25	160	2.3	<1	1.24	0.6	194	13.4	62.6	35.6	3.52
L904666		<0.2	1.59	730	25	122	2.1	<1	1.23	<0.5	197	13.7	51.5	52.8	3.42
L904667		0.3	1.32	78	24	104	2.0	<1	1.16	<0.5	221	13.1	54.3	60.9	3.04
L904668		0.4	1.15	124	23	78	1.7	<1	1.22	<0.5	204	14.3	44.5	54.9	3.48
L904668A		0.9	1.76	13	36	86	3.8	2	1.02	<0.5	24	14.9	55.9	38.6	5.72
L904668B		0.9	0.03	2	22	408	<0.5	<1	20.0	<0.5	<1	<0.5	2.3	1.1	0.05

Certified By:

y Later

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OE	S finish ((201073)					
DATE SAMPLED: No	v 16, 2012			ATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED): Dec 04, 20	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ag	Al	As	В	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cr	Cu	Fe
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%
Sample Description	RDL:	0.2	0.01	1	5	1	0.5	1	0.01	0.5	1	0.5	0.5	0.5	0.01
L904669		0.2	1.49	53	26	119	2.2	<1	1.30	<0.5	203	16.3	55.0	162	3.70
L904670		0.2	1.75	124	28	115	2.3	<1	1.43	0.5	191	16.6	62.6	59.3	3.99
L904671		0.3	1.70	138	25	93	2.0	<1	1.70	0.7	181	17.5	73.2	50.9	3.91
L904672		0.2	1.74	68	27	115	2.3	<1	1.41	0.5	177	15.0	66.4	57.1	3.83
L904673		0.3	1.93	86	30	115	2.5	<1	1.71	0.7	255	20.9	93.0	74.6	4.30
L904674		<0.2	2.02	43	31	174	2.9	<1	1.27	0.6	438	17.9	69.7	89.4	4.32
L904675		<0.2	1.77	30	26	203	2.4	<1	1.31	<0.5	269	14.3	70.5	64.5	3.76
L904676		0.2	2.99	12	35	586	3.0	<1	3.19	1.3	94	28.4	340	87.0	4.54
L904677		<0.2	2.10	32	30	249	2.8	<1	1.54	0.7	372	20.3	111	101	4.35
L904678		0.3	2.86	10	34	470	2.2	1	4.20	1.1	84	29.5	375	79.1	4.53
L904679		0.4	2.52	16	29	687	2.5	1	2.82	0.7	84	25.9	308	79.5	3.92
L904680		<0.2	1.98	136	27	254	1.8	<1	2.49	0.5	146	20.0	122	78.4	3.85
L904681		<0.2	1.99	125	28	150	2.3	<1	1.54	0.5	192	14.9	70.3	30.8	4.00
L904682		<0.2	2.00	88	27	134	2.3	<1	1.32	0.7	205	15.0	60.5	46.8	3.83

Certified By:

y Latomura

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OE	S finish	(201073)					
DATE SAMPLED: No	ov 16, 2012		[DATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED): Dec 04, 2	012	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ga	Hg	In	К	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
L904101		5	<1	<1	0.58	24	14	0.74	573	1.7	0.09	98.6	442	15.2	118
L904102		7	<1	<1	0.87	62	23	0.77	464	1.8	0.05	13.6	830	18.1	206
L904103		7	1	<1	0.97	57	27	0.75	494	1.6	0.04	13.2	822	20.5	223
L904104		5	<1	<1	0.71	52	17	0.73	445	3.7	0.03	12.8	806	101	149
L904105		6	<1	<1	0.85	56	22	0.76	482	2.1	0.04	13.6	761	19.9	187
L904106		6	<1	<1	0.88	56	26	0.73	490	1.9	0.04	11.9	764	16.3	200
L904107		6	<1	<1	0.94	57	29	0.77	501	1.4	0.04	12.4	790	15.5	213
L904108		6	<1	<1	0.91	58	20	0.75	506	1.8	0.04	12.4	786	17.9	202
L904109		5	1	<1	0.73	55	17	0.71	451	1.2	0.04	12.1	773	29.6	158
L904110		6	<1	<1	0.84	59	21	0.71	450	2.0	0.05	11.1	755	27.9	190
L904111		5	<1	<1	0.81	55	24	0.72	456	0.9	0.04	11.4	728	13.7	200
L904112		6	<1	<1	0.79	57	23	0.71	467	1.4	0.05	11.3	757	15.5	200
L904113		6	<1	<1	0.80	53	23	0.72	458	<0.5	0.05	11.3	749	15.9	194
L904114		7	<1	<1	0.90	60	25	0.74	491	2.0	0.05	11.9	772	16.5	210
L904115		6	<1	<1	0.87	59	24	0.76	493	1.0	0.05	12.6	811	18.6	206
L904116		6	<1	<1	0.82	48	25	0.71	455	1.6	0.05	11.6	737	8.5	193
L904117		6	<1	<1	0.83	55	21	0.74	480	1.3	0.04	11.9	758	10.4	188
L904118		6	<1	<1	0.84	53	26	0.72	461	1.6	0.05	11.3	740	8.5	197
L904119		6	<1	<1	0.89	58	21	0.75	506	1.1	0.05	12.3	806	15.7	206
L904120		6	<1	<1	0.91	55	28	0.78	491	2.2	0.06	12.5	829	22.3	211
L904121		6	<1	<1	0.85	52	22	0.74	478	8.0	0.05	12.2	778	17.4	199
L904121A		8	<1	<1	0.37	12	3	1.28	502	0.6	0.55	67.7	1180	73.0	33
L904121B		<5	<1	<1	0.01	2	4	13.3	394	<0.5	<0.01	<0.5	41	2.3	<10
L904122		5	<1	<1	0.74	52	23	0.69	427	1.1	0.05	10.0	685	14.5	179
L904123		6	<1	<1	0.81	53	24	0.84	444	2.0	0.06	10.6	707	14.3	194
L904124		6	<1	<1	0.76	58	21	0.67	441	1.1	0.05	10.1	680	19.8	188
L904125		6	<1	<1	0.79	54	18	0.70	439	1.2	0.05	10.3	674	16.4	181
L904126		6	<1	<1	0.84	60	23	0.72	495	1.0	0.05	11.6	750	16.5	210
L904127		6	<1	<1	0.87	55	24	0.72	474	2.2	0.05	12.0	748	13.6	209
L904128		6	1	<1	0.84	55	23	0.72	487	1.2	0.05	11.9	759	16.3	199
L904129		6	1	<1	0.83	53	25	0.75	473	1.9	0.05	11.8	763	8.7	201
L904130		6	<1	<1	0.81	53	24	0.73	463	1.3	0.05	11.6	783	32.4	192

Certified By:

y Stomura

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqu	a Regia	Digest -	Metals F	ackage,	ICP-OES	S finish ((201073)					
DATE SAMPLED: No	v 16, 2012		С	DATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED): Dec 04, 2	012	SAM	PLE TYPE:	Drill Core	
	Analyte:	Ga	Hg	ln	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
L904131		6	<1	<1	0.92	57	26	0.79	508	2.4	0.06	12.9	809	21.9	217
L904132		6	1	<1	0.87	56	25	0.77	482	1.3	0.05	12.6	810	16.7	200
L904133		7	1	<1	0.90	57	27	0.79	522	2.0	0.05	13.4	843	11.7	218
L904134		6	<1	<1	0.89	58	27	0.78	498	1.4	0.05	12.5	790	16.4	220
L904135		<5	<1	<1	0.75	57	19	0.70	438	1.9	0.04	10.9	728	18.7	173
L904136		5	<1	<1	0.80	56	20	0.68	462	1.5	0.04	11.4	755	17.8	189
L904137		6	1	<1	0.81	54	15	0.74	513	2.6	0.04	12.4	758	19.9	181
L904138		6	<1	<1	0.84	56	20	0.77	495	1.3	0.04	12.8	806	17.9	198
L904139		6	<1	<1	0.87	55	23	0.75	463	1.8	0.05	11.8	810	23.8	199
L904140		6	<1	<1	0.85	50	24	0.76	473	5.7	0.05	12.0	803	14.4	203
L904141		6	<1	<1	0.87	52	26	0.75	488	2.3	0.05	12.3	814	13.3	211
L904141A		7	<1	<1	0.28	9	2	1.01	406	<0.5	0.43	55.6	934	61.9	27
L904141B		<5	<1	<1	0.02	2	6	11.9	340	<0.5	<0.01	0.6	46	<0.5	<10
L904142		6	<1	<1	0.88	50	26	0.76	479	2.9	0.05	12.2	728	14.8	211
L904143		6	<1	<1	0.79	50	19	0.72	442	1.8	0.04	10.9	701	16.6	189
L904144		6	<1	<1	0.81	53	17	0.72	467	1.8	0.05	11.4	726	15.9	184
L904145		5	<1	<1	0.76	56	17	0.71	454	1.0	0.05	12.1	758	19.9	164
L904146		6	<1	<1	0.84	57	20	0.75	476	2.2	0.08	11.9	748	17.3	190
L904147		6	<1	<1	0.82	55	18	0.73	504	2.2	0.07	12.8	790	29.1	180
L904148		6	<1	<1	0.79	54	20	0.72	486	13.1	0.07	12.6	777	28.5	169
L904149		5	<1	<1	0.73	53	18	0.69	460	8.1	0.07	11.8	793	23.4	147
L904150		<5	<1	<1	0.62	53	13	0.57	411	12.7	0.06	11.4	754	23.6	125
L904551		10	<1	<1	1.57	93	27	1.56	698	3.2	0.07	33.0	1780	14.0	365
L904552		10	<1	<1	1.91	99	35	1.77	794	0.7	0.06	35.3	1840	11.3	460
L904553		13	<1	<1	2.36	80	49	2.64	777	<0.5	0.03	140	1910	9.3	573
L904554		14	<1	<1	3.16	25	70	4.01	629	<0.5	0.03	309	1580	2.1	738
L904555		9	<1	<1	1.58	91	25	1.51	651	4.0	0.09	34.6	1880	32.9	324
L904556		8	<1	<1	1.28	95	24	1.29	610	3.2	0.09	32.9	1760	23.6	288
L904557		8	<1	<1	1.22	98	23	1.32	647	2.9	0.08	36.0	1880	22.2	282
L904558		9	<1	<1	1.50	113	29	1.54	745	3.3	0.10	39.7	2070	21.1	387
L904559		9	<1	<1	1.36	102	27	1.46	660	2.6	0.10	34.9	1970	22.6	323
L904560		10	<1	<1	1.75	105	28	1.59	710	2.2	0.08	31.4	1710	14.3	368

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqua	a Regia	Digest -	Metals P	ackage,	ICP-OE	S finish ((201073)	l				
DATE SAMPLED: No	v 16, 2012		С	ATE RECE	EIVED: Nov	14, 2012		DATE	REPORTED): Dec 04, 2	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ga	Hg	ln	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
L904561		11	<1	<1	1.94	100	28	2.06	682	1.7	0.07	95.3	1880	19.2	382
L904562		10	2	<1	1.88	138	41	1.72	809	4.8	0.09	34.0	1920	19.9	367
L904563		<5	<1	<1	0.26	69	11	0.55	285	2.2	0.07	14.9	2290	17.1	49
L904564		7	<1	<1	0.79	69	30	0.93	615	3.8	0.13	24.1	1160	15.6	199
L904565		8	<1	<1	1.30	87	25	1.11	596	1.6	0.11	21.0	1350	27.2	310
L904566		10	<1	<1	1.62	95	35	1.27	809	1.3	0.11	26.8	1350	25.4	354
L904567		8	<1	<1	1.01	77	24	1.12	566	2.2	0.08	22.5	1410	537	191
L904568		5	<1	<1	0.75	49	18	0.74	375	3.5	0.05	15.6	888	1590	138
L904568A		12	<1	<1	0.12	1	51	2.56	2090	<0.5	0.03	66.3	317	9.9	<10
L904568B		<5	<1	<1	0.01	2	4	12.3	401	0.8	<0.01	<0.5	50	2.4	<10
L904569		7	<1	<1	1.03	68	24	1.11	582	3.4	0.09	23.6	1440	59.1	206
L904570		9	<1	<1	1.27	91	29	1.49	714	3.1	0.08	26.6	1610	35.4	283
L904571		12	<1	<1	1.81	49	34	2.54	620	<0.5	0.06	128	1460	7.5	279
L904572		12	<1	<1	1.82	38	38	2.63	578	<0.5	0.06	135	1430	3.1	282
L904573		12	2	<1	2.16	41	47	3.00	616	<0.5	0.09	129	1540	5.0	372
L904574		11	<1	<1	1.69	43	36	2.27	568	<0.5	0.09	97.7	1650	5.4	269
L904575		6	<1	<1	0.84	51	24	0.77	610	1.7	0.08	15.9	686	39.1	197
L904576		8	<1	<1	1.28	49	34	1.18	641	3.1	0.06	25.7	771	17.2	297
L904577		5	<1	<1	0.74	45	20	0.74	416	0.7	0.05	16.2	660	8.8	178
L904578		6	<1	<1	0.78	55	20	0.70	435	1.2	0.08	11.3	722	11.0	191
L904579		6	<1	<1	0.95	56	27	0.78	491	1.3	0.07	12.4	744	11.8	225
L904580		6	<1	<1	0.92	54	25	0.78	461	0.8	0.06	11.3	720	9.1	204
L904581		7	<1	<1	0.94	60	27	0.79	505	0.7	0.07	12.1	750	10.5	218
L904582		6	<1	<1	0.79	49	21	0.72	453	<0.5	0.05	11.1	720	8.3	164
L904583		7	<1	<1	0.91	56	25	0.79	468	1.2	0.07	12.2	772	9.1	192
L904584		6	<1	<1	0.88	60	24	0.81	504	1.2	0.07	12.8	737	7.7	182
L904585		6	<1	<1	0.83	56	21	0.77	509	0.9	0.06	13.0	746	21.1	192
L904586		6	<1	<1	0.91	58	24	0.77	488	0.9	0.07	11.8	728	15.5	203
L904587		7	<1	<1	0.92	60	25	0.74	495	<0.5	0.07	12.5	757	14.5	210
L904588		6	<1	<1	0.88	54	28	0.75	461	0.7	0.08	11.3	707	13.8	196
L904588A		14	<1	<1	0.14	6	17	2.00	5100	3.5	0.04	61.8	2930	24.6	20
L904588B		<5	<1	<1	0.01	2	4	12.6	355	<0.5	<0.01	<0.5	38	1.3	<10

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish ((201073)					
DATE SAMPLED: No	v 16, 2012		Г	ATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED	: Dec 04, 2	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ga	Hg	ln	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
L904589		6	<1	<1	0.85	59	23	0.73	478	1.0	0.07	12.7	716	20.0	184
L904590		6	2	<1	0.83	55	25	0.73	452	<0.5	0.06	10.9	729	15.1	198
L904591		6	<1	<1	0.82	54	25	0.75	464	<0.5	0.07	11.6	719	14.1	199
L904592		6	<1	<1	0.91	56	26	0.78	494	1.3	0.07	11.9	735	15.6	210
L904593		5	<1	<1	0.81	53	24	0.76	448	0.9	0.07	11.3	704	13.5	195
L904594		6	<1	<1	0.78	54	24	0.71	431	0.9	0.07	10.8	707	12.7	185
L904595		5	<1	<1	0.81	54	24	0.72	444	0.9	0.06	11.0	719	16.0	191
L904596		5	<1	<1	0.75	55	22	0.69	425	<0.5	0.07	10.4	705	14.1	191
L904597		<5	<1	<1	0.53	41	14	0.49	307	0.5	0.05	8.0	502	10.5	128
L904598		6	<1	<1	0.72	58	18	0.67	418	0.9	0.08	10.8	721	14.0	185
L904599		5	<1	<1	0.75	59	20	0.70	426	1.0	0.07	11.5	730	12.6	189
L904600		6	<1	<1	0.88	55	22	0.76	466	1.8	0.06	11.3	705	20.7	197
L904651		7	<1	<1	1.11	75	22	1.06	537	1.8	0.08	20.8	1440	16.1	210
L904652		9	<1	<1	1.44	85	36	1.19	640	2.1	0.08	21.6	1380	17.3	304
L904653		9	<1	<1	1.50	96	33	1.22	659	4.0	0.10	23.2	1390	15.1	317
L904654		9	<1	<1	1.37	85	24	1.20	656	0.8	0.07	23.3	1310	16.9	305
L904655		9	<1	<1	1.37	84	30	1.11	608	1.1	0.07	21.5	1270	17.4	291
L904656		9	<1	<1	1.38	86	24	1.28	639	2.0	0.07	25.7	1490	18.9	301
L904657		10	<1	<1	1.43	91	25	1.31	662	1.8	0.07	26.5	1580	19.0	329
L904658		9	<1	<1	1.08	91	19	1.21	571	5.2	0.05	30.3	1660	34.1	259
L904659		7	<1	<1	1.10	76	21	1.18	514	1.6	0.08	24.0	1380	27.3	209
L904660		6	<1	<1	0.82	56	16	0.76	378	0.7	0.07	14.3	833	24.5	174
L904661		9	<1	<1	1.13	84	24	1.16	813	2.7	0.09	27.3	1500	25.3	243
L904662		8	<1	<1	1.24	91	21	1.18	564	1.7	0.07	24.8	1490	22.7	283
L904663		9	<1	<1	1.61	90	41	1.43	714	3.1	0.08	27.4	1690	17.9	376
L904664		9	<1	<1	1.44	90	32	1.31	652	3.9	0.08	25.7	1570	16.9	368
L904665		9	<1	<1	1.45	89	40	1.28	659	1.8	0.11	25.1	1580	18.8	346
L904666		9	<1	<1	1.39	90	34	1.25	640	2.6	0.08	25.3	1570	19.1	338
L904667		8	<1	<1	1.15	103	22	1.03	564	8.8	0.08	24.4	1520	18.5	272
L904668		7	<1	<1	1.01	96	22	0.99	530	1.5	0.07	26.2	1610	18.8	250
L904668A		7	1	<1	0.37	12	3	1.30	494	<0.5	0.55	67.5	1180	74.8	33
L904668B		<5	<1	<1	0.02	2	4	12.7	369	<0.5	<0.01	0.9	60	1.5	10

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish (201073)					
DATE SAMPLED: No	v 16, 2012			ATE RECE	EIVED: Nov	14, 2012		DATE I	REPORTED	: Dec 04, 20	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	Ga	Hg	In	K	La	Li	Mg	Mn	Мо	Na	Ni	Р	Pb	Rb
	Unit:	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	5	1	1	0.01	1	1	0.01	1	0.5	0.01	0.5	10	0.5	10
L904669		8	<1	<1	1.33	93	24	1.28	606	2.9	0.08	27.5	1640	21.4	305
L904670		10	<1	<1	1.56	87	29	1.58	675	2.2	0.07	31.0	1650	19.6	341
L904671		9	<1	<1	1.44	83	29	1.55	681	1.9	0.07	39.6	1670	17.4	329
L904672		9	<1	<1	1.48	80	29	1.52	675	1.8	0.08	29.7	1670	19.4	342
L904673		10	<1	<1	1.68	120	31	1.81	758	2.3	0.07	52.8	1800	22.9	382
L904674		9	<1	<1	1.76	212	33	1.70	733	3.3	0.07	34.7	1840	17.0	380
L904675		8	<1	<1	1.46	127	30	1.48	685	3.2	0.10	29.3	1640	19.2	298
L904676		13	<1	<1	2.56	41	43	3.23	720	<0.5	0.05	138	1560	4.6	440
L904677		8	<1	<1	1.83	181	38	1.97	765	3.3	0.06	49.9	1840	17.7	385
L904678		13	<1	<1	2.06	38	46	3.45	714	<0.5	0.04	155	1270	6.7	329
L904679		12	1	<1	2.14	36	38	2.74	616	<0.5	0.05	124	1560	7.0	328
L904680		11	1	<1	1.43	67	35	1.84	661	0.6	0.04	57.9	1600	8.2	222
L904681		9	<1	<1	1.61	88	39	1.58	772	1.8	80.0	29.7	1710	14.3	309
L904682		10	<1	<1	1.69	96	37	1.51	757	2.0	0.08	29.0	1680	13.5	337

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish (201073)					
DATE SAMPLED: No	v 16, 2012		Г	ATE RECE	EIVED: Nov	14, 2012		DATE F	REPORTED	: Dec 04, 2	012	SAM	IPLE TYPE:	Drill Core	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
L904101		2.11	<1	3.0	<10	<5	18.8	<10	<10	7	0.12	<5	5	52.4	<1
L904102		0.147	1	3.9	<10	<5	24.8	<10	<10	29	0.15	<5	6	35.6	<1
L904103		0.094	<1	4.1	<10	<5	24.8	<10	<10	25	0.15	<5	6	36.1	<1
L904104		1.23	1	2.4	<10	<5	17.7	<10	<10	24	0.09	<5	7	23.8	<1
L904105		0.370	<1	2.9	<10	<5	24.5	<10	<10	26	0.13	<5	8	37.8	<1
L904106		0.150	1	3.2	<10	<5	26.6	<10	<10	28	0.14	<5	7	34.5	1
L904107		0.098	1	3.5	<10	<5	27.0	<10	<10	28	0.15	<5	7	36.3	<1
L904108		0.256	<1	3.1	<10	<5	27.1	<10	<10	26	0.15	<5	9	33.1	<1
L904109		0.785	1	2.4	<10	<5	22.8	<10	<10	32	0.11	<5	6	25.4	1
L904110		0.288	1	3.2	<10	<5	27.1	<10	<10	36	0.14	<5	8	31.3	<1
L904111		0.019	<1	2.5	<10	<5	23.5	<10	<10	30	0.14	<5	6	33.9	1
L904112		0.027	<1	2.4	<10	<5	26.3	<10	<10	30	0.14	<5	7	34.8	1
L904113		0.022	<1	2.4	<10	<5	26.8	<10	<10	26	0.14	<5	7	33.9	1
L904114		0.139	<1	3.9	<10	<5	30.2	<10	<10	28	0.15	<5	7	35.1	<1
L904115		0.271	<1	3.1	<10	<5	26.5	<10	<10	30	0.15	<5	6	35.3	<1
L904116		0.049	1	2.8	<10	<5	23.1	<10	<10	26	0.14	<5	6	33.5	<1
L904117		0.376	1	3.2	<10	<5	24.7	<10	<10	25	0.13	<5	5	30.6	<1
L904118		0.058	2	3.0	<10	<5	24.5	<10	<10	25	0.13	<5	6	33.6	<1
L904119		0.306	<1	3.2	<10	<5	28.0	<10	<10	28	0.15	<5	<5	32.7	1
L904120		0.062	<1	3.2	<10	<5	28.4	<10	<10	24	0.16	<5	7	36.5	<1
L904121		0.216	1	2.9	<10	<5	26.3	<10	<10	27	0.15	<5	8	33.9	1
L904121A		3.09	1	<0.5	<10	<5	226	<10	12	<5	0.40	<5	<5	48.5	<1
L904121B		0.008	<1	<0.5	<10	<5	139	<10	<10	<5	<0.01	<5	<5	7.5	<1
L904122		0.020	<1	2.8	<10	<5	23.4	<10	<10	28	0.13	<5	7	29.9	<1
L904123		0.020	1	2.7	<10	<5	28.8	<10	<10	32	0.14	<5	7	32.0	<1
L904124		0.241	1	3.0	<10	<5	26.4	<10	<10	35	0.13	<5	7	28.5	<1
L904125		0.266	3	3.0	<10	<5	26.3	<10	<10	27	0.13	<5	6	28.1	<1
L904126		0.174	<1	2.9	<10	<5	28.2	<10	<10	28	0.15	<5	8	33.7	<1
L904127		0.130	<1	3.3	<10	<5	28.2	<10	<10	26	0.15	<5	7	34.4	<1
L904128		0.251	<1	3.2	<10	<5	25.1	<10	<10	28	0.14	<5	6	33.5	2
L904129		0.026	<1	2.8	<10	<5	24.7	<10	<10	27	0.15	<5	<5	35.5	<1
L904130		0.052	1	2.8	<10	<5	28.1	<10	<10	27	0.15	<5	6	33.5	1

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish ((201073)						
DATE SAMPLED: No	ov 16, 2012		DATE RECEIVED: Nov 14, 2012						DATE REPORTED: Dec 04, 2012				SAMPLE TYPE: Drill Core			
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1	
L904131		0.089	<1	3.4	<10	<5	29.2	<10	<10	28	0.16	<5	<5	38.0	1	
L904132		0.356	2	3.3	<10	<5	28.6	<10	<10	27	0.15	<5	5	35.1	1	
L904133		0.092	<1	3.5	<10	<5	28.1	<10	<10	27	0.15	<5	5	39.7	<1	
L904134		0.071	<1	3.2	<10	<5	29.5	<10	<10	29	0.15	<5	<5	36.8	1	
L904135		0.563	<1	2.4	<10	<5	24.3	<10	<10	30	0.13	<5	5	27.4	1	
L904136		0.328	<1	3.1	<10	<5	23.9	<10	<10	27	0.13	<5	5	31.3	<1	
L904137		0.710	1	3.4	<10	<5	22.8	<10	<10	26	0.13	<5	<5	32.3	1	
L904138		0.371	<1	3.4	<10	<5	23.8	<10	<10	24	0.15	<5	<5	37.8	2	
L904139		0.386	<1	3.3	<10	<5	24.6	<10	<10	25	0.15	<5	<5	34.1	1	
L904140		0.038	<1	3.0	<10	<5	25.9	<10	<10	25	0.15	<5	<5	35.9	3	
L904141		0.033	2	3.2	<10	<5	25.8	<10	<10	26	0.15	<5	6	37.2	1	
L904141A		2.52	<1	<0.5	<10	<5	177	<10	11	<5	0.31	<5	<5	38.6	<1	
L904141B		0.009	<1	<0.5	<10	<5	128	<10	<10	<5	<0.01	<5	<5	6.0	<1	
L904142		0.077	<1	3.5	<10	<5	25.9	<10	<10	25	0.15	<5	6	35.4	12	
L904143		0.278	<1	3.2	<10	<5	23.1	<10	<10	24	0.13	<5	<5	31.4	2	
L904144		0.474	2	3.0	<10	<5	24.1	<10	<10	25	0.14	<5	<5	30.3	<1	
L904145		1.00	3	2.7	<10	<5	24.9	<10	<10	25	0.12	<5	<5	27.3	1	
L904146		0.842	<1	3.4	<10	<5	30.5	<10	<10	26	0.14	<5	<5	31.1	2	
L904147		0.936	<1	3.0	<10	<5	27.7	<10	<10	24	0.13	<5	<5	28.9	1	
L904148		1.10	<1	2.7	<10	<5	25.9	<10	<10	25	0.12	<5	<5	27.5	<1	
L904149		1.23	3	2.2	<10	<5	25.5	<10	<10	25	0.10	<5	<5	22.7	<1	
L904150		1.31	1	2.1	<10	<5	23.2	<10	<10	25	0.08	<5	<5	18.4	<1	
L904551		0.398	2	5.6	<10	<5	53.9	<10	<10	45	0.24	<5	<5	73.8	1	
L904552		0.025	<1	7.2	<10	<5	64.2	<10	<10	43	0.27	<5	<5	84.5	<1	
L904553		0.010	<1	5.5	<10	<5	75.3	<10	<10	26	0.27	<5	<5	86.6	2	
L904554		0.006	2	1.8	<10	<5	17.0	<10	<10	<5	0.27	<5	<5	89.5	<1	
L904555		0.540	2	5.0	<10	<5	50.4	<10	<10	38	0.26	<5	<5	69.2	8	
L904556		0.692	2	4.4	12	<5	53.5	<10	<10	38	0.20	<5	<5	61.3	14	
L904557		1.29	1	5.0	<10	<5	57.9	<10	<10	36	0.23	<5	<5	63.1	7	
L904558		0.947	3	6.6	<10	<5	71.8	<10	11	47	0.28	<5	<5	72.9	3	
L904559		0.786	1	5.2	<10	<5	59.5	<10	<10	39	0.29	<5	<5	69.2	2	
L904560		0.106	2	6.1	<10	<5	62.8	<10	<10	35	0.27	<5	<5	74.4	2	

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish ((201073))				
DATE SAMPLED: No	v 16, 2012		С	DATE RECE	EIVED: Nov	14, 2012		DATE F	REPORTED	: Dec 04, 2	012	SAMPLE TYPE: Drill Core			
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
L904561		0.539	2	5.0	<10	<5	55.4	<10	<10	34	0.25	<5	<5	78.6	2
L904562		0.216	<1	6.6	<10	<5	65.4	<10	<10	45	0.31	<5	<5	80.8	<1
L904563		0.016	<1	2.7	<10	<5	119	<10	<10	16	0.17	<5	<5	56.5	3
L904564		0.047	1	3.7	<10	<5	47.8	<10	<10	30	0.23	<5	<5	71.1	1
L904565		0.328	1	4.1	10	<5	51.3	<10	<10	40	0.23	<5	<5	54.4	2
L904566		0.211	<1	7.2	<10	<5	63.9	<10	10	38	0.27	<5	<5	66.1	1
L904567		1.49	7	6.4	<10	<5	25.3	<10	<10	33	0.14	<5	<5	55.4	15
L904568		2.11	19	3.4	<10	<5	20.2	<10	<10	19	0.10	<5	<5	36.2	9
L904568A		1.19	3	17.8	15	<5	42.5	<10	<10	<5	<0.01	<5	6	135	<1
L904568B		0.016	1	<0.5	<10	<5	128	<10	<10	<5	<0.01	<5	<5	6.6	1
L904569		1.41	5	5.7	<10	<5	26.9	<10	<10	31	0.13	<5	<5	49.6	19
L904570		1.23	6	8.3	<10	<5	38.5	<10	<10	37	0.18	<5	<5	65.1	25
L904571		0.252	2	5.7	<10	<5	51.7	<10	12	7	0.34	<5	<5	107	<1
L904572		0.117	<1	4.6	<10	<5	61.6	<10	11	<5	0.33	<5	<5	104	<1
L904573		0.142	4	4.4	<10	<5	79.1	<10	14	<5	0.38	<5	<5	126	<1
L904574		0.223	1	3.8	<10	<5	65.9	<10	10	5	0.35	<5	<5	107	<1
L904575		0.506	1	2.3	<10	<5	39.2	<10	<10	24	0.13	<5	<5	31.8	<1
L904576		0.119	3	3.3	<10	<5	39.1	<10	<10	22	0.14	<5	<5	43.0	<1
L904577		0.019	2	2.0	<10	<5	28.3	<10	<10	20	0.11	<5	<5	29.6	<1
L904578		0.010	<1	1.8	<10	<5	33.3	<10	<10	24	0.13	<5	<5	31.9	<1
L904579		0.034	<1	2.5	<10	<5	35.4	<10	<10	26	0.15	<5	<5	34.9	<1
L904580		0.184	<1	2.9	<10	<5	31.6	<10	<10	24	0.14	<5	<5	32.2	1
L904581		0.075	1	3.5	<10	<5	32.5	<10	<10	27	0.15	<5	<5	35.9	<1
L904582		0.171	<1	2.8	<10	<5	30.5	<10	<10	23	0.11	<5	<5	29.3	<1
L904583		0.126	1	3.3	<10	<5	32.4	<10	<10	24	0.14	<5	<5	34.0	2
L904584		0.163	1	3.2	<10	<5	37.1	<10	<10	27	0.14	<5	<5	33.4	<1
L904585		0.378	<1	3.0	<10	<5	31.6	<10	<10	25	0.14	<5	<5	32.6	<1
L904586		0.248	1	3.4	<10	<5	33.5	<10	<10	27	0.15	<5	<5	33.5	<1
L904587		0.280	<1	3.9	<10	<5	33.2	<10	<10	27	0.15	<5	<5	34.4	<1
L904588		0.059	<1	2.8	<10	<5	32.1	<10	<10	25	0.15	<5	<5	33.7	<1
L904588A		4.81	16	8.7	23	<5	113	<10	13	<5	0.08	<5	10	135	3
L904588B		0.010	<1	<0.5	<10	<5	123	<10	<10	<5	<0.01	<5	<5	6.7	<1

Certified By:

y Latomura

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqu	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish (201073)						
DATE SAMPLED: No	v 16, 2012			DATE RECE	EIVED: Nov	14, 2012		DATE REPORTED: Dec 04, 2012					SAMPLE TYPE: Drill Core			
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V	W	
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1	
L904589		0.446	<1	3.1	<10	<5	32.1	<10	<10	25	0.13	<5	<5	29.9	1	
L904590		0.067	<1	2.5	<10	<5	30.5	<10	<10	24	0.13	<5	<5	31.8	<1	
L904591		0.151	<1	2.4	<10	<5	29.7	<10	<10	25	0.13	<5	6	31.9	<1	
L904592		0.287	<1	3.0	<10	<5	29.8	<10	<10	25	0.14	<5	5	32.4	<1	
L904593		0.048	<1	2.4	<10	<5	31.7	<10	<10	24	0.14	<5	<5	32.3	<1	
L904594		0.028	<1	2.0	<10	<5	32.2	<10	<10	24	0.14	<5	<5	31.2	<1	
L904595		0.195	<1	2.3	<10	<5	29.7	<10	<10	25	0.14	<5	<5	30.6	<1	
L904596		0.011	<1	1.7	<10	<5	31.9	<10	<10	26	0.14	<5	<5	29.9	<1	
L904597		<0.005	<1	1.2	<10	<5	22.4	<10	<10	19	0.10	<5	<5	20.9	1	
L904598		0.021	<1	2.0	<10	<5	31.4	<10	<10	28	0.14	<5	<5	31.9	<1	
L904599		0.008	<1	1.8	<10	<5	29.7	<10	<10	29	0.14	<5	6	32.2	<1	
L904600		0.160	<1	3.0	<10	<5	30.3	<10	<10	24	0.14	<5	5	31.4	<1	
L904651		0.225	<1	3.8	<10	<5	41.7	<10	<10	18	0.19	<5	<5	54.2	10	
L904652		0.038	<1	5.0	<10	<5	56.4	<10	<10	36	0.23	<5	<5	57.0	2	
L904653		0.123	2	5.0	<10	<5	56.2	<10	<10	41	0.23	<5	<5	59.2	11	
L904654		0.360	<1	4.3	<10	<5	50.8	<10	<10	37	0.19	<5	<5	54.2	14	
L904655		0.167	3	5.3	<10	<5	46.2	<10	<10	36	0.20	<5	<5	54.4	3	
L904656		0.535	<1	6.1	<10	<5	40.0	<10	<10	36	0.21	<5	<5	61.7	10	
L904657		0.579	3	6.4	<10	<5	43.8	<10	<10	35	0.21	<5	<5	65.5	6	
L904658		1.29	1	5.2	<10	<5	27.8	<10	<10	36	0.17	<5	<5	61.5	1	
L904659		0.954	3	5.6	<10	<5	33.5	<10	<10	34	0.17	<5	<5	51.6	8	
L904660		0.178	<1	3.3	<10	<5	29.9	<10	<10	24	0.14	<5	<5	36.5	4	
L904661		0.422	<1	4.6	<10	<5	72.6	<10	<10	35	0.19	<5	6	57.1	12	
L904662		0.585	2	5.5	<10	<5	37.1	<10	<10	35	0.17	<5	<5	57.4	4	
L904663		0.045	1	4.5	<10	<5	45.8	<10	<10	36	0.26	<5	<5	70.3	3	
L904664		0.278	<1	4.6	<10	<5	48.3	<10	<10	37	0.24	<5	<5	62.6	3	
L904665		0.114	<1	4.8	<10	<5	53.5	<10	<10	35	0.25	<5	<5	66.5	5	
L904666		0.311	2	5.0	<10	<5	45.7	<10	<10	37	0.23	<5	<5	63.4	4	
L904667		0.531	1	4.4	<10	<5	46.2	<10	<10	40	0.21	<5	<5	57.4	5	
L904668		1.19	2	3.9	<10	<5	42.0	<10	<10	37	0.21	<5	<5	54.6	7	
L904668A		3.13	<1	<0.5	<10	<5	232	<10	12	<5	0.40	<5	<5	48.4	<1	
L904668B		0.020	2	<0.5	<10	<5	202	<10	<10	<5	<0.01	<5	<5	7.4	<1	

Certified By:

y Latomura

Certificate of Analysis

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			Aqua	a Regia	Digest -	Metals P	ackage,	ICP-OES	S finish ((201073)					
DATE SAMPLED: No	v 16, 2012		С	DATE RECE	EIVED: Nov	14, 2012		DATE F	REPORTED): Dec 04, 2	012	SAM	PLE TYPE:	: Drill Core	
	Analyte:	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V	W
	Unit:	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	RDL:	0.005	1	0.5	10	5	0.5	10	10	5	0.01	5	5	0.5	1
L904669		0.969	2	4.5	<10	<5	44.9	<10	<10	37	0.25	<5	<5	61.8	11
L904670		0.883	<1	5.4	<10	<5	49.9	<10	<10	36	0.27	<5	<5	69.2	<1
L904671		1.22	2	4.7	<10	<5	60.5	<10	<10	34	0.24	<5	<5	67.1	1
L904672		0.498	<1	4.9	<10	<5	52.1	<10	<10	34	0.27	<5	<5	69.3	1
L904673		1.49	3	5.7	<10	<5	56.3	<10	11	46	0.28	<5	<5	79.4	2
L904674		0.850	<1	5.8	<10	<5	56.9	<10	<10	82	0.30	<5	<5	79.7	<1
L904675		0.231	<1	4.6	<10	<5	57.1	<10	<10	47	0.27	<5	<5	68.2	2
L904676		0.114	<1	5.1	<10	<5	104	<10	11	<5	0.37	<5	<5	143	<1
L904677		0.269	<1	4.9	<10	<5	58.7	<10	12	62	0.31	<5	<5	88.2	2
L904678		0.148	<1	8.6	<10	<5	128	<10	<10	<5	0.29	<5	<5	136	<1
L904679		0.142	<1	4.1	<10	<5	88.6	<10	<10	<5	0.33	<5	<5	119	<1
L904680		0.785	<1	5.5	<10	<5	63.6	<10	<10	19	0.21	<5	<5	81.0	1
L904681		0.097	2	6.4	<10	<5	60.6	<10	<10	35	0.27	<5	<5	73.3	3
L904682		0.161	<1	5.2	<10	<5	57.4	<10	13	37	0.28	<5	<5	71.0	2

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest - Metals Packa	age, ICP-OES finish (201073)	
DATE SAMPLED: No	v 16, 2012		[DATE REC	EIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core
	Analyte:	Y	Zn	Zr	As-OL		
	Unit:	ppm	ppm	ppm	%		
Sample Description	RDL:	1	0.5	5	0.01		
L904101		7	107	12			
L904102		9	53.3	19			
L904103		9	58.7	20			
L904104		8	178	24			
L904105		9	67.0	15			
L904106		9	56.4	11			
L904107		10	61.8	14			
L904108		9	55.9	14			
L904109		8	66.9	20			
L904110		10	60.0	15			
L904111		9	52.2	13			
L904112		9	52.6	15			
L904113		9	52.7	14			
L904114		10	57.1	11			
L904115		10	101	14			
L904116		9	52.5	12			
L904117		9	80.4	18			
L904118		9	55.7	15			
L904119		10	60.2	13			
L904120		10	80.2	15			
L904121		11	67.3	11			
L904121A		5	55.6	37			
L904121B		<1	10.8	<5			
L904122		9	45.7	13			
L904123		9	47.6	13			
L904124		9	47.7	18			
L904125		9	119	13			
L904126		10	51.5	13			
L904127		10	50.8	11			
L904128		10	53.5	13			
L904129		9	50.9	13			
L904130		9	83.8	11			

Certified By:

y Latomura

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)											
DATE SAMPLED: No	v 16, 2012		С	ATE REC	EIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core				
	Analyte:	Y	Zn	Zr	As-OL						
	Unit:	ppm	ppm	ppm	%						
Sample Description	RDL:	1	0.5	5	0.01						
L904131		10	76.2	10							
L904132		9	59.6	14							
L904133		9	62.8	16							
L904134		10	53.3	10							
L904135		9	47.2	20							
L904136		8	55.4	20							
L904137		8	56.8	17							
L904138		9	106	11							
L904139		9	65.7	18							
L904140		9	49.9	12							
_904141		9	51.7	14							
L904141A		4	45.5	32							
L904141B		<1	17.1	<5							
L904142		9	52.5	12							
L904143		9	52.1	12							
L904144		9	47.7	14							
L904145		8	51.0	14							
L904146		9	46.3	15							
L904147		9	72.5	14							
L904148		9	80.8	14							
L904149		10	50.9	19							
L904150		10	50.6	17							
L904551		15	49.4	36							
L904552		17	55.5	29							
L904553		13	70.0	24							
_904554		6	87.7	28							
_904555		16	63.9	16							
_904556		14	60.0	12							
L904557		15	59.3	11							
L904558		18	73.3	12							
L904559		19	63.0	16							
L904560		17	49.8	28							

Certified By:

y Latomura

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)											
DATE SAMPLED: No	v 16, 2012		С	ATE REC	EIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core				
	Analyte:	Y	Zn	Zr	As-OL						
	Unit:	ppm	ppm	ppm	%						
Sample Description	RDL:	1	0.5	5	0.01						
L904561		16	60.2	20							
L904562		18	61.2	34							
L904563		16	22.1	23							
L904564		16	59.6	34							
L904565		15	63.2	23							
L904566		15	68.1	12							
L904567		12	77.4	11							
L904568		9	145	10	2.32						
L904568A		3	112	8							
L904568B		<1	11.8	<5							
_904569		14	104	10							
L904570		13	66.0	12	1.10						
L904571		9	58.6	24							
L904572		8	49.7	19							
L904573		9	54.7	19							
L904574		9	56.0	25							
L904575		8	976	17							
L904576		8	69.6	23							
L904577		7	43.8	15							
L904578		8	52.9	13							
L904579		8	55.8	13							
L904580		8	51.2	19							
L904581		9	54.0	16							
L904582		8	40.7	24							
L904583		9	47.0	22							
_904584		9	46.1	24							
_904585		9	191	12							
_904586		9	52.3	12							
L904587		9	54.2	11							
L904588		8	49.4	11							
L904588A		17	114	11							
L904588B		<1	17.4	<5							

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest - Metals Pack	age, ICP-OES finish (201073)	
DATE SAMPLED: No	v 16, 2012		[DATE REC	EIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core
	Analyte:	Y	Zn	Zr	As-OL		
	Unit:	ppm	ppm	ppm	%		
Sample Description	RDL:	1	0.5	5	0.01		
L904589		8	79.3	21			
L904590		8	48.9	19			
L904591		8	48.3	18			
L904592		8	45.8	13			
L904593		8	47.1	13			
L904594		8	47.5	12			
L904595		8	50.3	11			
L904596		8	47.1	12			
L904597		6	34.0	8			
L904598		8	46.8	13			
L904599		8	47.5	15			
L904600		8	49.8	18			
L904651		11	66.1	12			
L904652		13	61.6	12			
L904653		14	62.6	11			
L904654		11	57.5	11			
L904655		12	59.3	11			
L904656		13	72.0	9			
L904657		13	68.7	9			
L904658		12	55.9	20			
L904659		10	60.8	10			
L904660		8	53.8	17			
L904661		13	62.1	9			
L904662		12	71.2	11			
L904663		15	72.3	8			
L904664		15	63.0	7			
L904665		15	67.5	8			
L904666		14	65.3	8			
L904667		14	55.1	10			
L904668		13	51.6	10			
L904668A		5	54.9	39			
L904668B		<1	7.8	<5			

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

			Aqu	a Regia	Digest - Metals Pa	ckage, ICP-OES finish (201073)	
DATE SAMPLED: No	v 16, 2012		Г	ATE REC	EIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core
	Analyte:	Y	Zn	Zr	As-OL		
	Unit:	ppm	ppm	ppm	%		
Sample Description	RDL:	1	0.5	5	0.01		
L904669		14	62.0	9			
L904670		15	73.3	9			
L904671		14	70.5	9			
L904672		15	80.3	9			
L904673		15	72.7	13			
L904674		18	76.3	14			
L904675		16	66.3	10			
L904676		8	62.9	15			
L904677		17	77.6	13			
L904678		9	61.6	11			
L904679		8	55.3	12			
L904680		11	80.7	11			
L904681		16	78.0	9			
L904682		16	76.5	8			

Comments:

RDL - Reported Detection Limit Sample NRC: Not Received

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)										
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core				
	Analyte:	Sample Login Weight	Au	Au-Grav						
	Unit:	kg	ppm	g/t						
Sample Description	RDL:	0.01	0.001	0.05						
L904101		0.72	0.024							
L904102		2.06	0.019							
L904103		1.34	0.009							
L904104		1.06	0.105							
L904105		1.64	0.014							
L904106		2.40	0.010							
L904107		1.96	0.004							
L904108		2.18	0.018							
L904109		1.78	0.037							
L904110		2.14	0.214							
L904111		2.74	0.002							
L904112		2.26	0.002							
L904113		1.96	<0.001							
L904114		2.40	0.073							
L904115		1.92	0.266							
L904116		2.32	0.006							
L904117		1.56	0.020							
L904118		2.18	0.002							
L904119		2.02	0.028							
L904120		1.98	0.130							
L904121		2.34	1.02							
L904121A		0.10	1.75							
L904121B		0.56	0.002							
L904122		2.10	0.002							
L904123		2.34	0.007							
L904124		2.58	0.012							
L904125		2.02	0.042							
L904126		2.20	0.006							
L904127		2.14	0.006							
L904128		2.26	0.016							
L904129		2.02	0.012							

Certified By:

y Later

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)										
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core				
	Analyte:	Sample Login Weight	Au	Au-Grav						
	Unit:	kg	ppm	g/t						
Sample Description	RDL:	0.01	0.001	0.05						
L904130		2.06	0.832							
L904131		2.30	0.199							
L904132		2.30	0.039							
L904133		2.30	1.64							
L904134		2.32	0.007							
L904135		2.38	0.015							
L904136		2.20	0.017							
L904137		2.08	0.783							
L904138		1.10	0.022							
L904139		1.14	0.340							
L904140		1.94	0.003							
L904141		2.34	0.002							
L904141A		0.08	1.81							
L904141B		0.48	<0.001							
L904142		2.08	0.004							
L904143		2.34	0.039							
L904144		2.30	0.017							
L904145		2.10	0.025							
L904146		2.34	0.022							
L904147		2.38	0.027							
L904148		2.18	0.025							
L904149		2.12	0.031							
L904150		2.36	0.030							
L904151		2.18	0.035							
L904152		3.02	0.041							
L904153		2.14	0.058							
L904154		2.22	0.105							
L904155		1.98	0.060							
L904156		2.58	0.097							
L904157		2.04	0.105							
L904158		2.16	0.111							

Certified By:

y Later

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)									
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.001	0.05					
L904159		2.42	2.22						
L904160		1.94	0.034						
L904161		2.34	0.090						
_904161A		0.10	9.29						
L904161B		0.84	0.013						
L904162		2.26	0.051						
L904163		2.00	0.055						
L904164		2.16	0.092						
L904165		2.80	0.063						
L904166		1.50	0.042						
L904167		2.26	0.040						
L904168		2.24	0.045						
L904169		2.06	0.039						
L904170		2.32	0.064						
L904171		2.36	0.153						
L904172		2.12	0.023						
L904173		2.12	0.091						
L904174		2.30	0.033						
L904175		2.10	0.072						
L904176		2.20	0.080						
L904177		2.18	0.134						
L904178		3.52	0.957						
L904179		2.14	1.39						
L904180		1.94	0.053						
L904181		2.60	0.020						
_904181A		0.10	5.05						
_904181B		0.54	0.002						
L904182		2.44	0.014						
L904183		2.80	0.017						
_904551		1.20	0.147						
L904552		1.08	0.041						

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)									
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.001	0.05					
L904553		1.10	0.003						
L904554		1.72	0.002						
L904555		1.60	0.132						
L904556		2.18	0.288						
L904557		1.72	0.212						
L904558		2.14	0.170						
L904559		2.62	0.359						
L904560		0.76	0.024						
L904561		1.00	0.271						
L904562		0.64	0.085						
L904563		2.46	<0.001						
L904564		2.02	0.017						
L904565		0.68	0.233						
L904566		0.58	0.002						
L904567		2.62	>10	26.0					
L904568		2.10	>10	37.2					
L904568A		0.10	>10	8.97					
L904568B		1.10	0.017						
L904569		2.56	1.60						
L904570		1.60	0.715						
L904571		2.44	0.011						
L904572		2.42	0.003						
L904573		2.12	0.003						
L904574		1.74	0.006						
L904575		1.82	0.011						
L904576		2.44	0.075						
L904577		2.36	0.016						
L904578		2.38	<0.001						
L904579		2.52	0.004						
L904580		0.38	0.043						
L904581		2.40	0.011						

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assav - Trace Au. ICP-OES finish (202052)											
. 16 2012											
V 16, 2012			DATE RECEIVED.	1100 14, 2012	DATE REPORTED. De	U4, 2012	SAMPLE TYPE: Drill Core				
Analyte:	Login Weight	Au	Au-Grav								
		ppm									
RDL:			0.05								
	2.50	0.024									
	2.54	0.066									
	2.20	0.025									
	2.56	0.007									
	0.10	9.35									
	0.76	0.014									
	2.60	0.047									
	2.00	0.010									
	0.94	0.011									
	2.34	0.026									
	2.38	0.004									
	2.42	0.006									
	2.46	0.007									
	v 16, 2012 Analyte: Unit: RDL:	Analyte: Sample Login Weight Unit: kg RDL: 0.01 2.42 2.32 2.30 2.50 2.54 2.20 2.56 0.10 0.76 2.60 2.00 0.94 2.34 2.38 2.26 2.14	Analyte: Login Weight Unit: kg ppm RDL: 0.01 0.001 2.42 0.039 2.32 0.018 2.30 0.008 2.50 0.024 2.54 0.066 2.20 0.025 2.56 0.007 0.10 9.35 0.76 0.014 2.60 0.047 2.00 0.010 0.94 0.011 2.34 0.026 2.38 0.004 2.38 0.004 2.26 0.002 2.14 0.099 2.42 0.006 2.46 0.007 2.28 0.012 2.52 0.004 1.98 0.014 2.46 0.022 2.44 0.031 2.40 0.001 2.70 0.375 2.58 0.090 2.42 0.633 0.10 6.46	Name	V 16, 2012 Sample Login Weight Unit: kg ppm g/t RDL: 0.01 0.001 0.05	Analyte: Login Weight Unit: kg ppm g/t RDL: 0.01 0.001 0.05 2.42 0.039 2.32 0.018 2.30 0.008 2.50 0.002 2.54 0.066 2.20 0.025 2.56 0.007 0.10 9.35 0.76 0.014 2.60 0.047 2.00 0.010 0.94 0.011 2.34 0.026 2.38 0.004 2.26 0.002 2.14 0.099 2.42 0.006 2.42 0.006 2.46 0.007 2.28 0.012 2.59 0.004 2.59 0.001 2.10 0.006 2.46 0.007 2.28 0.012 2.16 0.0004 2.26 0.0004 2.26 0.0007 2.28 0.012 2.29 0.001 2.19 0.001 2.10 0.001 2.10 0.001 2.10 0.001 2.10 0.004 2.25 0.001 2.10 0.001 2.10 0.001 2.10 0.001	V 16, 2012 Name				

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)									
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.001	0.05					
L904609		2.54	0.303						
L904610		2.52	0.171						
L904611		2.60	0.333						
L904612		2.30	0.174						
L904613		2.04	0.035						
L904614		2.48	0.061						
L904615		2.42	0.052						
L904616		2.30	0.006						
L904617		1.98	0.034						
L904618		2.50	0.161						
L904619		2.42	0.012						
L904620		2.50	0.007						
L904621		2.38	0.020						
L904622		2.44	0.013						
L904623		2.44	0.038						
L904624		2.58	0.011						
L904625		1.22	0.010						
L904626		0.82	0.005						
L904627		1.08	0.016						
L904628		2.62	0.162						
L904628A		0.10	1.77						
L904628B		0.46	<0.001						
L904629		2.62	0.011						
L904630		0.98	0.080						
L904631		2.64	>10	25.1					
L904632		0.70	1.06						
L904633		2.38	0.070						
L904634		2.58	0.033						
L904635		2.18	0.060						
L904636		2.58	0.019						
L904637		2.24	0.008						

Certified By:

y Later

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

		P-OES finish (202052)				
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core
	Analyte:	Sample Login Weight	Au	Au-Grav		
	Unit:	kg	ppm	g/t		
Sample Description	RDL:	0.01	0.001	0.05		
L904638		2.22	0.007			
_904639		2.22	0.006			
_904640		2.42	0.076			
_904641		2.54	0.067			
L904642		2.36	0.009			
L904643		2.56	0.019			
L904644		2.56	0.031			
L904645		2.26	0.030			
L904646		2.54	0.013			
L904647		1.60	0.014			
_904648		2.78	0.005			
L904648A		0.10	9.05			
L904648B		0.72	0.002			
L904649		2.22	0.004			
L904650		NRC	NRC			
L904651		2.44	0.041			
L904652		2.62	0.018			
L904653		2.46	0.024			
L904654		2.70	0.752			
L904655		1.30	0.094			
L904656		0.60	0.084			
L904657		0.96	0.223			
L904658		0.56	0.678			
_904659		1.64	0.190			
_904660		1.14	0.023			
_904661		1.60	0.115			
_904662		0.58	0.114			
L904663		1.08	0.009			
_904664		2.22	0.042			
_904665		2.60	0.028			
L904666		2.34	0.052			

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)									
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.001	0.05					
L904667		2.44	7.14						
L904668		2.66	0.066						
L904668A		0.10	1.76						
L904668B		0.72	0.014						
L904669		1.62	0.032						
L904670		1.56	0.064						
L904671		2.26	0.040						
L904672		2.36	0.023						
L904673		2.42	0.055						
L904674		2.18	0.032						
_904675		2.38	0.030						
L904676		2.50	0.002						
L904677		2.32	0.017						
L904678		2.28	0.002						
L904679		2.62	0.002						
L904680		2.24	0.058						
L904681		2.48	0.015						
L904682		1.80	0.016						
L904232		2.44	0.021						
L904233		2.44	0.035						
L904234		1.98	0.064						
L904235		2.82	0.062						
L904236		1.48	0.063						
_904501		2.58	0.006						
L904502		2.58	0.003						
_904503		2.50	0.003						
_904504		2.50	0.094						
L904505		2.42	0.016						
L904506		2.64	0.065						
L904507		2.54	0.007						
L904508		2.22	0.005						

Certified By:

y Later

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)									
DATE SAMPLED: No	v 16, 2012			DATE RECEIVED: Nov 14, 2012	DATE REPORTED: Dec 04, 2012	SAMPLE TYPE: Drill Core			
	Analyte:	Sample Login Weight	Au	Au-Grav					
	Unit:	kg	ppm	g/t					
Sample Description	RDL:	0.01	0.001	0.05					
L904509		2.48	0.003						
L904510		2.70	0.017						
L904511		2.18	3.12						
L904512		3.14	0.016						
L904513		2.52	0.020						
L904514		2.84	0.009						
L904515		2.58	0.011						
L904516		2.60	0.343						
L904526		2.50	0.065						
L904527		2.50	0.065						
L904528		2.56	0.132						
L904529		2.80	0.068						
L904530		2.60	0.072						
L904531		2.48	0.033						
L904532		2.32	0.016						
L904533		2.44	0.494						
L904534		2.46	1.00						
L904535		2.44	0.306						
L904536		2.56	1.03						
L904537		2.50	0.093						
L904539		1.26	0.162						
L904540		1.52	0.010						
L904541		1.26	0.019						
L904542		2.52	0.277						
_904543		2.62	0.006						
_904544		2.80	0.037						
_904545		1.46	0.054						
L904546		1.74	0.028						
L904547		1.48	0.006						
L904548		1.16	0.077						
L904550		1.52	0.590						

Certified By:

AGAT WORK ORDER: 12U664020 PROJECT NO: WEST HAWK LAKE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: CANADIAN STAR MINERALS LTD

ATTENTION TO: CHRIS NORTH

Fire Assay - Trace Au, ICP-OES finish (202052)										
DATE SAMPLED: Nov 16, 2012 DATE RECEIVED: Nov 14, 2012 DATE REPORTED: Dec 04, 2012 SAMPLE TYPE: Drill Core										
	Analyte:	Sample Login Weight	Au	Au-Grav						
	Unit:	kg	ppm	g/t						
Sample Description	RDL:	0.01	0.001	0.05						
L904051	_	2.22	0.058							
L904525		1.64	0.011							

Comments:

RDL - Reported Detection Limit Sample NRC: Not Received

Certified By:

y Latonium

Quality Assurance

Solid Analysis											
RPT Date: Dec 04, 2012		REPLICATE						REFER	RENCE MATE	RIAL	
DADAMETED.				- "1		Method Blank	Result	Expect		Accepta	ble Limits
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3957755	0.0111	0.0137	21.0%	< 0.001	0.273	0.263	104%	90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933529	< 0.001	< 0.001	0.0%	< 0.001	0.266	0.263	101%	90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933542	0.012	0.012	0.0%	< 0.001	1.57	1.52	103%	90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933705	0.006	0.006	0.0%	< 0.001	0.275	0.263	105%	90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933567	0.0268	0.0224	17.9%	< 0.001	1.46	1.52	96%	90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933579	2.22	2.23	0.4%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933743	0.055	0.046	17.8%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish ((202052) 1	3933755	0.0642	0.0702	8.9%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933617	0.024	0.021	13.3%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933629	0.715	0.692	3.3%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish (Au	(202052) 1	3933642	0.0177	0.0139	24.1%	< 0.001				90%	110%
Fire Assay - Trace Au, ICP-OES finish ((202052)										
Au	1	3933654	0.004	0.002		< 0.001				90%	110%
Aqua Regia Digest - Metals Package, IG	CP-OFS fin	ish (201073)									
Ag Al	1 1	3933517 3933517	7.04 1.17	7.09 1.19	0.7% 1.7%	< 0.2 < 0.01	15.3	13.0	118%	80% 80%	120% 120%
As B	1 1	3933517 3933517	3 41	< 1 40	2.5%	< 1 < 5				80% 80%	120% 120%
Ва	1	3933517	181	185	2.2%	< 1				80%	120%
Ве	1	3933517	0.97	0.94	3.1%	< 0.5	0.3	0.4	73%	80%	120%
Bi	1	3933517	4	6		< 1				80%	120%
Ca	1	3933517	1.24	1.28	3.2%	< 0.01				80%	120%
Cd	1	3933517	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3933517	45	44	2.2%	< 1				80%	120%
Co	1	3933517	36.5	35.8	1.9%	< 0.5				80%	120%
Cr	1	3933517	115	117	1.7%	< 0.5				80%	120%
Cu	1	3933517	7360	7340	0.3%	< 0.5				80%	120%

Quality Assurance

		Solid	Anal	ysis (C	Conti	nued)					
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery -	Acceptal	ble Limits
							value	Value		Lower	Upper
Fe	1	3933517	6.01	6.11	1.7%	< 0.01				80%	120%
Ga	1	3933517	5	5	0.0%	< 5				80%	120%
Нд	1	3933517	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933517	< 1	< 1	0.0%	< 1				80%	120%
K	1	3933517	0.580	0.586	1.0%	< 0.01				80%	120%
La	1	3933517	24	23	4.3%	< 1				80%	120%
Li	1	3933517	14	14	0.0%	< 1				80%	120%
Mg	1	3933517	0.74	0.75	1.3%	< 0.01				80%	120%
Mn	1	3933517	573	552	3.7%	< 1				80%	120%
Мо	1	3933517	1.7	3.1		< 0.5				80%	120%
Na	1	3933517	0.092	0.096	4.3%	< 0.01				80%	120%
Ni	1	3933517	98.6	98.6	0.0%	< 0.5				80%	120%
P	1	3933517	442	431	2.5%	< 10	701	600	117%	80%	120%
Pb	1	3933517	15.2	15.7	3.2%	< 0.5				80%	120%
Rb	1	3933517	118	117	0.9%	< 10				80%	120%
S	1	3933517	2.11	2.10	0.5%	< 0.005				80%	120%
Sb	1	3933517	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	3933517	2.98	3.16	5.9%	< 0.5				80%	120%
Se	1	3933517	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933517	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933517	18.8	19.7	4.7%	< 0.5				80%	120%
Та	1	3933517	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3933517	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3933517	7	7	0.0%	< 5				80%	120%
Ti	1	3933517	0.12	0.12	0.0%	< 0.01				80%	120%
ті	1	3933517	< 5	< 5	0.0%	< 5				80%	120%
U	1	3933517	5	4	22.2%	< 5				80%	120%
V	1	3933517	52.4	48.8	7.1%	< 0.5				80%	120%
W	1	3933517	< 1	< 1	0.0%	< 1				80%	120%
Υ	1	3933517	7	7	0.0%	< 1	6	7	88%	80%	120%
Zn	1	3933517	107	108	0.9%	< 0.5				80%	120%
Zr	1	3933517	12	11	8.7%	< 5				80%	120%
Aqua Regia Digest - Metals Pac	kage, ICP-OES fin	ish (201073)									
Ag	1	3933529	< 0.2	< 0.2	0.0%	< 0.2	14.8	13.0	114%	80%	120%
Al	1	3933529	0.989	0.970	1.9%	< 0.01				80%	120%
As	1	3933529	14	14	0.0%	< 1				80%	120%
В	1	3933529	14	14	0.0%	< 5				80%	120%
Ва	1	3933529	69	67	2.9%	< 1				80%	120%
Be	1	3933529	1.39	1.32	5.2%	< 0.5	0.3	0.4	73%	80%	120%
Ві	1	3933529	< 1	< 1	0.0%	< 1				80%	120%
Са	1	3933529	0.518	0.510	1.6%	< 0.01				80%	120%
Cd	1	3933529	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3933529	112	109	2.7%	< 1				80%	120%
Со	1	3933529	7.08	6.92	2.3%	< 0.5				80%	120%

Quality Assurance

CLIENT NAME: CANADIAN STAR MINERALS LTD

PROJECT NO: WEST HAWK LAKE

AGAT WORK ORDER: 12U664020

ATTENTION TO: CHRIS NORTH

Solid Analysis (Continued)											
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper
Cr	1	3933529	27.6	27.2	1.5%	< 0.5				80%	120%
Cu	1	3933529	20.2	20.3	0.5%	< 0.5	6100	6000	101%	80%	120%
Fe	1	3933529	2.13	2.14	0.5%	< 0.01				80%	120%
Ga	1	3933529	6	6	0.0%	< 5				80%	120%
Hg	1	3933529	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933529	< 1	< 1	0.0%	< 1				80%	120%
K	1	3933529	0.798	0.790	1.0%	< 0.01				80%	120%
La	1	3933529	53	51	3.8%	< 1				80%	120%
Li	1	3933529	23	23	0.0%	< 1				80%	120%
Mg	1	3933529	0.72	0.72	0.0%	< 0.01				80%	120%
Mn	1	3933529	458	454	0.9%	< 1				80%	120%
Мо	1	3933529	< 0.5	0.6		< 0.5				80%	120%
Na	1	3933529	0.05	0.05	0.0%	< 0.01				80%	120%
Ni	1	3933529	11.3	11.2	0.9%	< 0.5				80%	120%
Р	1	3933529	749	744	0.7%	< 10	681	600	114%	80%	120%
Pb	1	3933529	15.9	14.5	9.2%	< 0.5				80%	120%
Rb	1	3933529	194	195	0.5%	< 10				80%	120%
S	1	3933529	0.022	0.025	12.8%	< 0.005				80%	120%
Sb	1	3933529	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	3933529	2.43	2.34	3.8%	< 0.5				80%	120%
Se	1	3933529	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933529	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933529	26.8	25.0	6.9%	0.7				80%	120%
Та	1	3933529	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3933529	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3933529	26	26	0.0%	< 5				80%	120%
Ti	1	3933529	0.14	0.14	0.0%	< 0.01				80%	120%
TI	1	3933529	< 5	< 5	0.0%	< 5				80%	120%
U	1	3933529	7	6	15.4%	< 5				80%	120%
V	1	3933529	33.9	33.3	1.8%	< 0.5				80%	120%
W	1	3933529	1	< 1		< 1				80%	120%
Υ	1	3933529	9	9	0.0%	< 1	6	7	86%	80%	120%
Zn	1	3933529	52.7	51.4	2.5%	< 0.5				80%	120%
Zr	1	3933529	14	13	7.4%	< 5				80%	120%
Aqua Regia Digest - Metals Package, IC	CP-OES fin	ish (201073)									
Ag	1	3933542	< 0.2	< 0.2	0.0%	< 0.2	15	13.0	115%	80%	120%
Al	1	3933542	0.95	0.96	1.0%	< 0.01				80%	120%
As	1	3933542	50	51	2.0%	< 1				80%	120%
В	1	3933542	15	13	14.3%	< 5				80%	120%
Ва	1	3933542	62	61	1.6%	< 1				80%	120%
Ве	1	3933542	1.27	1.24	2.4%	< 0.5	0.3	0.4	73%	80%	120%
Bi	1	3933542	< 1	< 1	0.0%	< 1				80%	120%
Ca	1	3933542	0.76	0.76	0.0%	< 0.01				80%	120%
Cd	1	3933542	< 0.5	< 0.5	0.0%	< 0.5				80%	120%

Quality Assurance

		Solic	l Anal	ysis (C	Conti	nued)					
RPT Date: Dec 04, 2012			REPLIC	CATE	_			REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits
TAIG WILLER	24.0	oup.o.iu		1.00	15		Value	Value	1.00010.7	Lower	Upper
Се	1	3933542	118	119	0.8%	< 1				80%	120%
Со	1	3933542	6.3	6.7	6.2%	< 0.5				80%	120%
Cr	1	3933542	29.4	26.4	10.8%	< 0.5				80%	120%
Cu	1	3933542	16.5	16.3	1.2%	< 0.5				80%	120%
Fe	1	3933542	1.94	1.93	0.5%	< 0.01				80%	120%
Ga	1	3933542	6	5	18.2%	< 5				80%	120%
Hg	1	3933542	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933542	< 1	< 1	0.0%	< 1				80%	120%
K	1	3933542	0.757	0.766	1.2%	< 0.01				80%	120%
La	1	3933542	58	58	0.0%	< 1				80%	120%
Li	1	3933542	21	22	4.7%	< 1				80%	120%
Mg	1	3933542	0.67	0.66	1.5%	< 0.01				80%	120%
Mn	1	3933542	441	429	2.8%	< 1				80%	120%
Mo	1	3933542	1.1	8.0		< 0.5				80%	120%
Na	1	3933542	0.05	0.05	0.0%	< 0.01				80%	120%
Ni	1	3933542	10.1	9.71	3.9%	< 0.5				80%	120%
Р	1	3933542	680	673	1.0%	< 10	685	600	114%	80%	120%
Pb	1	3933542	19.8	19.4	2.0%	< 0.5				80%	120%
Rb	1	3933542	188	182	3.2%	< 10	10	13	76%	80%	120%
S	1	3933542	0.241	0.238	1.3%	< 0.005				80%	120%
Sb	1	3933542	1	< 1		< 1				80%	120%
Sc	1	3933542	2.96	2.88	2.7%	< 0.5				80%	120%
Se	1	3933542	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933542	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933542	26.4	26.3	0.4%	< 0.5				80%	120%
Та	1	3933542	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3933542	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3933542	35	35	0.0%	< 5				80%	120%
Ti	1	3933542	0.13	0.13	0.0%	< 0.01				80%	120%
TI	1	3933542	< 5	< 5	0.0%	< 5				80%	120%
U	1	3933542	7	6	15.4%	< 5				80%	120%
V	1	3933542	28.5	27.5	3.6%	< 0.5				80%	120%
W	1	3933542	< 1	< 1	0.0%	< 1				80%	120%
Υ	1	3933542	9	9	0.0%	< 1	6	7	87%	80%	120%
Zn	1	3933542	47.7	46.3	3.0%	< 0.5				80%	120%
Zr	1	3933542	18	18	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package, IC	P-OES fin	ish (201073)									
Ag	1	3933554	< 0.2	< 0.2	0.0%	< 0.2	13.6	13.0	105%	80%	120%
Al	1	3933554	0.969	0.940	3.0%	< 0.01				80%	120%
As	1	3933554	35	35	0.0%	< 1				80%	120%
В	1	3933554	14	14	0.0%	< 5				80%	120%
Ва	1	3933554	66	64	3.1%	< 1				80%	120%
Ве	1	3933554	1.3	1.3	0.0%	< 0.5	0.3	0.4	70%	80%	120%
Bi	1	3933554	< 1	< 1	0.0%	< 1				80%	120%

Quality Assurance

		Solid	Anal	ysis (C	Conti	nued)					
RPT Date: Dec 04, 2012			REPLIC	CATE				REFE	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery		ble Limits
							value	Value		Lower	Upper
Ca	1	3933554	0.79	0.76	3.9%	< 0.01				80%	120%
Cd	1	3933554	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3933554	115	115	0.0%	< 1				80%	120%
Co	1	3933554	7.0	7.0	0.0%	< 0.5				80%	120%
Cr	1	3933554	39.5	39.5	0.0%	< 0.5				80%	120%
Cu	1	3933554	16.1	16.2	0.6%	< 0.5	5769	6000	96%	80%	120%
Fe	1	3933554	2.04	1.98	3.0%	< 0.01				80%	120%
Ga	1	3933554	5	5	0.0%	< 5				80%	120%
Hg	1	3933554	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933554	< 1	< 1	0.0%	< 1				80%	120%
K	1	3933554	0.80	0.78	2.5%	< 0.01				80%	120%
La	1	3933554	56	56	0.0%	< 1				80%	120%
Li	1	3933554	20	20	0.0%	< 1				80%	120%
Mg	1	3933554	0.678	0.696	2.6%	< 0.01				80%	120%
Mn	1	3933554	462	454	1.7%	< 1				80%	120%
Мо	1	3933554	1.5	0.7		< 0.5	344	360	95%	80%	120%
Na	1	3933554	0.04	0.04	0.0%	< 0.01				80%	120%
Ni	1	3933554	11.4	11.2	1.8%	< 0.5				80%	120%
P	1	3933554	755	725	4.1%	< 10	632	600	105%	80%	120%
Pb	1	3933554	17.8	16.7	6.4%	< 0.5				80%	120%
Rb	1	3933554	189	185	2.1%	< 10				80%	120%
S	1	3933554	0.328	0.326	0.6%	< 0.005				80%	120%
Sb	1	3933554	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	3933554	3.1	3.1	0.0%	< 0.5				80%	120%
Se	1	3933554	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933554	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933554	23.9	23.4	2.1%	< 0.5				80%	120%
Та	1	3933554	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3933554	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3933554	27	27	0.0%	< 5				80%	120%
Ti	1	3933554	0.13	0.13	0.0%	< 0.01				80%	120%
TI	1	3933554	< 5	< 5	0.0%	< 5				80%	120%
U	1	3933554	5	6	18.2%	< 5				80%	120%
V	1	3933554	31.3	30.7	1.9%	< 0.5				80%	120%
W	1	3933554	< 1	< 1	0.0%	< 1				80%	120%
Y	1	3933554	8	8	0.0%	< 1	6	7	82%	80%	120%
Zn	1	3933554	55.4	55.1	0.5%	< 0.5	-	•	/-	80%	120%
Zr	1	3933554	20	19	5.1%	< 5				80%	120%
Aqua Regia Digest - Metals Package, I	CP-OES fin	ish (201073)									
Ag	1	3933567	0.39	0.33	16.7%	< 0.2	13.4	13.0	103%	80%	120%
Al	1	3933567	1.06	1.12	5.5%	< 0.01				80%	120%
As	1	3933567	82	87	5.9%	< 1				80%	120%
В	1	3933567	16	17	6.1%	< 5				80%	120%
Ва	1	3933567	83	87	4.7%	< 1				80%	120%

Quality Assurance

Solid Analysis (Continued)												
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper	
Be	1	3933567	1.25	1.35	7.7%	< 0.5	0.3	0.4	76%	80%	120%	
Bi	1	3933567	< 1	< 1	0.0%	< 1				80%	120%	
Ca	1	3933567	0.72	0.75	4.1%	< 0.01				80%	120%	
Cd	1	3933567	< 0.5	< 0.5	0.0%	< 0.5				80%	120%	
Се	1	3933567	114	121	6.0%	< 1				80%	120%	
Со	1	3933567	8.14	8.41	3.3%	< 0.5				80%	120%	
Cr	1	3933567	29.4	31.6	7.2%	< 0.5				80%	120%	
Cu	1	3933567	36.5	38.4	5.1%	< 0.5	5617	6000	93%	80%	120%	
Fe	1	3933567	2.21	2.28	3.1%	< 0.01				80%	120%	
Ga	1	3933567	6	6	0.0%	< 5				80%	120%	
Hg	1	3933567	< 1	< 1	0.0%	< 1				80%	120%	
In	1	3933567	< 1	< 1	0.0%	< 1				80%	120%	
K	1	3933567	0.819	0.855	4.3%	< 0.01				80%	120%	
La	1	3933567	55	59	7.0%	< 1				80%	120%	
Li	1	3933567	18	19	5.4%	< 1				80%	120%	
Mg	1	3933567	0.728	0.766	5.1%	< 0.01				80%	120%	
Mn	1	3933567	504	526	4.3%	< 1				80%	120%	
Mo	1	3933567	2.21	2.55	14.3%	< 0.5	345	360	95%	80%	120%	
Na	1	3933567	0.071	0.078	9.4%	< 0.01				80%	120%	
Ni	1	3933567	12.8	13.4	4.6%	< 0.5				80%	120%	
Р	1	3933567	790	826	4.5%	< 10	622	600	104%	80%	120%	
Pb	1	3933567	29.1	28.5	2.1%	< 0.5				80%	120%	
Rb	1	3933567	180	188	4.3%	< 10				80%	120%	
S	1	3933567	0.936	0.969	3.5%	< 0.005				80%	120%	
Sb	1	3933567	< 1	< 1	0.0%	< 1				80%	120%	
Sc	1	3933567	3.02	3.20	5.8%	< 0.5				80%	120%	
Se	1	3933567	< 10	< 10	0.0%	< 10				80%	120%	
Sn	1	3933567	< 5	< 5	0.0%	< 5				80%	120%	
Sr	1	3933567	27.7	30.5	9.6%	< 0.5				80%	120%	
Та	1	3933567	< 10	< 10	0.0%	< 10				80%	120%	
Те	1	3933567	< 10	< 10	0.0%	< 10				80%	120%	
Th	1	3933567	24	26	8.0%	< 5				80%	120%	
Ti	1	3933567	0.133	0.140	5.1%	< 0.01				80%	120%	
TI	1	3933567	< 5	< 5	0.0%	< 5				80%	120%	
U	1	3933567	< 5	< 5	0.0%	< 5				80%	120%	
V	1	3933567	28.9	30.8	6.4%	< 0.5				80%	120%	
W	1	3933567	1	2		< 1				80%	120%	
Υ	1	3933567	9	10	10.5%	< 1	6	7	87%	80%	120%	
Zn	1	3933567	72.5	74.6	2.9%	< 0.5				80%	120%	
Zr	1	3933567	14	15	6.9%	< 5				80%	120%	
Aqua Regia Digest - Metals Package, IC	CP-OES fin	ish (201073)										
Ag	1	3933617	< 0.2	< 0.2	0.0%	< 0.2	14	13.0	107%	80%	120%	
Al	1	3933617	2.00	2.07	3.4%	< 0.01				80%	120%	
As	1	3933617	31	29	6.7%	< 1				80%	120%	
В	1	3933617	31	29	6.7%	< 5				80%	120%	

Quality Assurance

Solid Analysis (Continued)												
RPT Date: Dec 04, 2012			REPLIC	CATE	1			REFER	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery -	Accepta Lower	Upper	
Ва	1	3933617	178	186	4.4%	< 1		'		80%	120%	
Ве	1	3933617	2.6	2.5	3.9%	< 0.5				80%	120%	
Bi	1	3933617	1	< 1		< 1				80%	120%	
Ca	1	3933617	2.01	2.19	8.6%	< 0.01				80%	120%	
Cd	1	3933617	0.6	0.6	0.0%	< 0.5				80%	120%	
Се	1	3933617	227	232	2.2%	< 1				80%	120%	
Co	1	3933617	14.1	14.0	0.7%	< 0.5				80%	120%	
Cr	1	3933617	75.7	78.1	3.1%	< 0.5				80%	120%	
Cu	1	3933617	22.2	23.0	3.5%	< 0.5	5817	6000	96%	80%	120%	
Fe	1	3933617	3.87	3.97	2.6%	< 0.01				80%	120%	
Ga	1	3933617	10	10	0.0%	< 5				80%	120%	
Hg	1	3933617	< 1	< 1	0.0%	< 1				80%	120%	
In	1	3933617	< 1	< 1	0.0%	< 1				80%	120%	
K	1	3933617	1.75	1.81	3.4%	< 0.01				80%	120%	
La	1	3933617	105	107	1.9%	< 1				80%	120%	
Li	1	3933617	28	28	0.0%	< 1				80%	120%	
Mg	1	3933617	1.59	1.63	2.5%	< 0.01				80%	120%	
Mn	1	3933617	710	731	2.9%	< 1				80%	120%	
Mo	1	3933617	2.2	2.2	0.0%	< 0.5	354	360	98%	80%	120%	
Na	1	3933617	0.083	0.087	4.7%	< 0.01				80%	120%	
Ni	1	3933617	31.4	32.2	2.5%	< 0.5				80%	120%	
P	1	3933617	1710	1750	2.3%	< 10	640	600	107%	80%	120%	
Pb	1	3933617	14.3	15.8	10.0%	< 0.5				80%	120%	
Rb	1	3933617	368	381	3.5%	< 10				80%	120%	
S	1	3933617	0.106	0.108	1.9%	< 0.005				80%	120%	
Sb	1	3933617	2	< 1		< 1				80%	120%	
Sc	1	3933617	6.1	6.1	0.0%	< 0.5				80%	120%	
Se	1	3933617	< 10	< 10	0.0%	< 10				80%	120%	
Sn	1	3933617	< 5	< 5	0.0%	< 5				80%	120%	
Sr	1	3933617	62.8	64.2	2.2%	< 0.5				80%	120%	
Та	1	3933617	< 10	< 10	0.0%	< 10				80%	120%	
Те	1	3933617	< 10	< 10	0.0%	< 10				80%	120%	
Th	1	3933617	35	34	2.9%	< 5				80%	120%	
Ti	1	3933617	0.27	0.27	0.0%	< 0.01				80%	120%	
TI	1	3933617	< 5	< 5	0.0%	< 5				80%	120%	
U	1	3933617	< 5	< 5	0.0%	< 5				80%	120%	
V	1	3933617	74.4	76.0	2.1%	< 0.5				80%	120%	
W	1	3933617	2	1		< 1				80%	120%	
Υ	1	3933617	17	17	0.0%	< 1	6	7	85%	80%	120%	
Zn	1	3933617	49.8	51.5	3.4%	< 0.5				80%	120%	
Zr	1	3933617	28	28	0.0%	< 5				80%	120%	
Aqua Regia Digest - Metals Packa	ge, ICP-OES fin	ish (201073)										
Ag	1	3933630	0.30	0.24	22.2%	< 0.2	14.5	13.0	112%	80%	120%	
Al	1	3933630	2.31	2.41	4.2%	< 0.01				80%	120%	

Quality Assurance

CLIENT NAME: CANADIAN STAR MINERALS LTD

AGAT WORK ORDER: 12U664020

PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

Solid Analysis (Continued)												
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper	
As	1	3933630	80	79	1.3%	< 1				80%	120%	
В	1	3933630	28	30	6.9%	< 5				80%	120%	
Ва	1	3933630	563	581	3.1%	< 1				80%	120%	
Ве	1	3933630	2.64	2.81	6.2%	< 0.5				80%	120%	
Bi	1	3933630	< 1	< 1	0.0%	< 1				80%	120%	
Ca	1	3933630	2.53	2.62	3.5%	< 0.01				80%	120%	
Cd	1	3933630	0.6	8.0	28.6%	< 0.5				80%	120%	
Ce	1	3933630	107	109	1.9%	< 1				80%	120%	
Со	1	3933630	26.9	27.1	0.7%	< 0.5				80%	120%	
Cr	1	3933630	270	276	2.2%	< 0.5				80%	120%	
Cu	1	3933630	55.7	56.6	1.6%	< 0.5	6019	6000	100%	80%	120%	
Fe	1	3933630	3.96	4.06	2.5%	< 0.01				80%	120%	
Ga	1	3933630	12	12	0.0%	< 5				80%	120%	
Hg	1	3933630	< 1	< 1	0.0%	< 1				80%	120%	
In	1	3933630	< 1	< 1	0.0%	< 1				80%	120%	
K	1	3933630	1.81	1.87	3.3%	< 0.01				80%	120%	
La	1	3933630	49	50	2.0%	< 1				80%	120%	
Li	1	3933630	34	35	2.9%	< 1				80%	120%	
Mg	1	3933630	2.54	2.63	3.5%	< 0.01				80%	120%	
Mn	1	3933630	620	636	2.5%	< 1				80%	120%	
Mo	1	3933630	< 0.5	< 0.5	0.0%	< 0.5	361	360	100%	80%	120%	
Na	1	3933630	0.063	0.069	9.1%	< 0.01				80%	120%	
Ni	1	3933630	128	129	0.8%	< 0.5				80%	120%	
Р	1	3933630	1460	1500	2.7%	< 10	673	600	112%	80%	120%	
Pb	1	3933630	7.48	6.39	15.7%	< 0.5				80%	120%	
Rb	1	3933630	279	282	1.1%	< 10				80%	120%	
S	1	3933630	0.252	0.249	1.2%	< 0.005				80%	120%	
Sb	1	3933630	2	2	0.0%	< 1				80%	120%	
Sc	1	3933630	5.73	5.96	3.9%	< 0.5				80%	120%	
Se	1	3933630	< 10	< 10	0.0%	< 10				80%	120%	
Sn	1	3933630	< 5	< 5	0.0%	< 5				80%	120%	
Sr	1	3933630	51.7	54.0	4.4%	< 0.5				80%	120%	
Та	1	3933630	< 10	< 10	0.0%	< 10	1	0.9	107%	80%	120%	
Те	1	3933630	12	13	8.0%	< 10				80%	120%	
Th	1	3933630	7	8	13.3%	< 5				80%	120%	
Ti	1	3933630	0.34	0.34	0.0%	< 0.01				80%	120%	
TI	1	3933630	< 5	< 5	0.0%	< 5				80%	120%	
U	1	3933630	< 5	< 5	0.0%	< 5				80%	120%	
V	1	3933630	107	109	1.9%	< 0.5				80%	120%	
W	1	3933630	< 1	< 1	0.0%	< 1				80%	120%	
Y	1	3933630	9	10	10.5%	< 1	6	7	80%	80%	120%	
Zn	1	3933630	58.6	59.7	1.9%	< 0.5	•	•	55/6	80%	120%	
Zr	1	3933630	24	26	8.0%	< 5				80%	120%	
	'	000000		-0	0.070	. 0				5576	12070	

Aqua Regia Digest - Metals Package, ICP-OES finish (201073)

Quality Assurance

Ga 1 3933642 7 6 15.4% < 5	Solid Analysis (Continued)												
PARAMETER	RPT Date: Dec 04, 2012			REPLIC	CATE				REFE	RENCE MATE	RIAL		
March Marc	PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank			Recovery			
Ai	A -:		0000040			0.00/			10.0	1100/			
As 1 3933842 41 39 5.0% <1 80% 120% 858 868 120% 868 878 120% 868 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 868 878 120% 878 1								14.6	13.0	112%			
Ba													
Ba													
Be													
B	Ва	1	3933642	105	101	3.9%	< 1				80%	120%	
Ca	Ве	1	3933642	1.2	1.2	0.0%	< 0.5				80%	120%	
Cd Ce 1 9393842	Bi	1	3933642	< 1	< 1	0.0%	< 1				80%	120%	
Ce 1 3933642 114 111 2.7% <1 80% 120% Co 1 3933642 7.2 6.9 4.3% < 0.5 80% 120% Cr 1 3933642 37.3 35.4 5.2% < 0.5 80% 120% Cu 1 3933642 11.0 11.0 0.0% < 0.5 80% 120% Ga 1 3933642 21.7 2.07 4.7% < 0.01 80% 120% Hg 1 3933642 < 1 < 1 0.0% < 1 80% 120% K 1 3933642 < 1 < 1 0.0% < 1 80% 120% La 1 3933642 < 55 1.8% < 1 80% 120% La 1 3933642 < 55 1.8% < 1 80% 120% Mg 1 3933642 0.79 0.77 2.6% < 0.01 <	Ca	1	3933642	0.84	0.80	4.9%	< 0.01				80%	120%	
CC	Cd	1	3933642	< 0.5	< 0.5	0.0%	< 0.5				80%	120%	
Cr	Се	1	3933642	114	111	2.7%	< 1				80%	120%	
Cr	Со	1	3933642	7.2	6.9	4.3%	< 0.5				80%	120%	
Fe	Cr	1	3933642		35.4	5.2%	< 0.5				80%	120%	
Fe	Cu	1	3933642	11.0	11.0	0.0%	< 0.5				80%	120%	
Ga 1 3933642 7 6 15.4% < 5 80% 120% Hg 1 3933642 <1 <1 0.0% <1 80% 120% K 1 3933642 <1 <1 0.0% <1 80% 120% La 1 3933642 0.91 0.874 4.3% <0.01 80% 120% La 1 3933642 0.91 0.874 4.3% <0.01 80% 120% Li 1 3933642 2.5 24 4.1% <1 80% 120% Mg 1 3933642 0.79 0.77 2.6% <0.01 80% 120% Mn 1 3933642 1.21 1.30 7.2% <0.5 363 360 100% 80% 120% Na 1 3933642 1.22 11.6 5.0% <0.5 363 360 100% 80% 120%	Fe	1											
N	Ga	1											
N	На	1	3033642	<i>c</i> 1	<i>-</i> 1	0.0%	<i>c</i> 1				80%	120%	
K													
La													
Li													
Mg													
Mn 1 3933642 468 445 5.0% < 1 80% 120% Mo 1 3933642 1.21 1.30 7.2% < 0.5 363 360 100% 80% 120% Na 1 3933642 0.07 0.07 0.0% < 0.01 80% 120% Ni 1 3933642 12.2 11.6 5.0% < 0.5 80% 120% P 1 3933642 772 732 5.3% < 10 671 600 112% 80% 120% Pb 1 3933642 9 12 7.54 19.0% < 0.5 60 112% 80% 120% Rb 1 3933642 192 185 3.7% < 10 600 112% 80% 120% Sc 1 3933642 1 1 0.0% < 1 80% 120% Sc 1 3933642 3 3			.2			,0					0070	.2070	
Mo 1 3933642 1.21 1.30 7.2% < 0.5 363 360 100% 80% 120% Na 1 3933642 0.07 0.07 0.0% < 0.01 80% 120% Ni 1 3933642 12.2 11.6 5.0% < 0.5 600 112% 80% 120% Pb 1 3933642 9.12 7.54 19.0% < 0.5 600 112% 80% 120% Rb 1 3933642 9.12 7.54 19.0% < 0.5 600 112% 80% 120% Rb 1 3933642 192 185 3.7% < 10 80% 120% Sb 1 3933642 11 1 0.0% < 0.5 80% 120% Sc 1 3933642 3.27 3.03 7.6% < 0.5 80% 120% Sc 1 3933642 < 10 < 10 < 0.5 </td <td>Mg</td> <td></td>	Mg												
Na													
Ni 1 3933642 12.2 11.6 5.0% < 0.5 80% 120% PP								363	360	100%			
P					0.07	0.0%	< 0.01						
Pb 1 3933642 9.12 7.54 19.0% < 0.5	Ni	1	3933642	12.2	11.6	5.0%	< 0.5				80%	120%	
Rb 1 3933642 192 185 3.7% < 10	P	1	3933642	772	732	5.3%	< 10	671	600	112%	80%	120%	
S 1 3933642 0.126 0.118 6.6% < 0.005	Pb	1	3933642	9.12	7.54	19.0%	< 0.5				80%	120%	
Sb 1 3933642 1 1 0.0% < 1 80% 120% Sc 1 3933642 3.27 3.03 7.6% < 0.5	Rb	1	3933642	192	185	3.7%	< 10				80%	120%	
Sc 1 3933642 3.27 3.03 7.6% < 0.5 80% 120% Se 1 3933642 < 10 < 10 0.0% < 10 80% 120% Sn 1 3933642 < 5 < 5 0.0% < 5 80% 120% Sr 1 3933642 32.4 31.4 3.1% < 0.5 80% 120% Ta 1 3933642 < 10 < 10 0.0% < 10 80% 120% Te 1 3933642 < 10 < 10 0.0% < 10 80% 120% Th 1 3933642 < 24 23 4.3% < 5 80% 120% Ti 1 3933642 < 0.140 0.132 5.9% < 0.01 80% 120% Ti 1 3933642 < 5 < 5 0.0% < 5 80% 120% U 1 3933642 < 5 < 5 0.0% < 5 80% 120% V 1 3933642 34.	S	1	3933642	0.126	0.118	6.6%	< 0.005				80%	120%	
Se 1 3933642 < 10	Sb	1	3933642	1	1	0.0%	< 1				80%	120%	
Se 1 3933642 < 10	Sc	1	3933642	3.27	3.03	7.6%	< 0.5				80%	120%	
Sn 1 3933642 < 5													
Sr 1 3933642 32.4 31.4 3.1% < 0.5													
Ta 1 3933642 < 10	Sr												
Th 1 3933642 24 23 4.3% < 5	Та												
Th 1 3933642 24 23 4.3% < 5	Τρ	1	3033643	< 10	< 10	O 00/2	< 10				80%	120%	
Ti 1 3933642 0.140 0.132 5.9% < 0.01													
TI 1 3933642 < 5 < 5 0.0% < 5 80% 120% U 1 3933642 < 5 < 5 0.0% < 5 80% 120% V 1 3933642 34.0 32.3 5.1% < 0.5 80% 120% W 1 3933642 2 < 1 < 1 80% 120% Y 1 3933642 9 8 11.8% < 1 6 7 83% 80% 120%													
U 1 3933642 < 5													
V 1 3933642 34.0 32.3 5.1% < 0.5	U												
W 1 3933642 2 <1 <1 <1 80% 120% Y 1 3933642 9 8 11.8% <1 6 7 83% 80% 120%													
Y 1 3933642 9 8 11.8% <1 6 7 83% 80% 120%						5.1%							
	W												
Zn 1 3933642 47.0 45.0 4.3% < 0.5 80% 120%	Υ							6	7	83%			
	Zn	1	3933642	47.0	45.0	4.3%	< 0.5				80%	120%	

Quality Assurance

		Solid	Anal	ysis (C	Conti	nued)					
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits
				,			Value	Value	,	Lower	Upper
Zr	1	3933642	22	21	4.7%	< 5				80%	120%
Aqua Regia Digest - Metals Package, I											
Ag	1	3933654	< 0.2	< 0.2	0.0%	< 0.2	14.9	13.0	114%	80%	120%
Al	1	3933654	0.985	0.958	2.8%	< 0.01				80%	120%
As	1	3933654	21	22	4.7%	< 1				80%	120%
В	1	3933654	13	14	7.4%	< 5				80%	120%
Ва	1	3933654	75	73	2.7%	< 1				80%	120%
3e	1	3933654	1.25	1.27	1.6%	< 0.5				80%	120%
Bi	1	3933654	< 1	< 1	0.0%	< 1				80%	120%
Ca	1	3933654	0.559	0.540	3.5%	< 0.01				80%	120%
Cd	1	3933654	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3933654	109	109	0.0%	< 1				80%	120%
Co	1	3933654	6.5	7.0	7.4%	< 0.5				80%	120%
Cr	1	3933654	32.4	32.7	0.9%	< 0.5				80%	120%
Cu	1	3933654	19.4	18.8	3.1%	< 0.5				80%	120%
Fe	1	3933654	2.08	2.03	2.4%	< 0.01				80%	120%
Ga	1	3933654	5	6	18.2%	< 5				80%	120%
Hg	1	3933654	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933654	· < 1	< 1	0.0%	· < 1				80%	120%
 K	1	3933654	0.805	0.790	1.9%	< 0.01				80%	120%
La	1	3933654	53	53	0.0%	< 1				80%	120%
Li	1	3933654	24	23	4.3%	< 1				80%	120%
Mg	1	3933654	0.76	0.73	4.0%	< 0.01				80%	120%
Mn		3933654		449		< 1				80%	120%
	1		448		0.2%	< 0.5					120%
Mo	1	3933654	0.9	< 0.5	0.00/					80%	
Na Ni	1 1	3933654 3933654	0.07 11.3	0.07 11.6	0.0% 2.6%	< 0.01 < 0.5				80% 80%	120% 120%
							074	222	4.400/		
P	1	3933654	704	701	0.4%	< 10	674	600	112%	80%	120%
Pb	1	3933654	13.5	13.1	3.0%	< 0.5				80%	120%
Rb	1	3933654	195	191	2.1%	< 10				80%	120%
S	1	3933654	0.048	0.048	0.0%	< 0.005				80%	120%
Sb	1	3933654	< 1	< 1	0.0%	< 1				80%	120%
Sc	1	3933654	2.4	2.4	0.0%	< 0.5				80%	120%
Se	1	3933654	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933654	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933654	31.7	30.3	4.5%	< 0.5				80%	120%
Та	1	3933654	< 10	< 10	0.0%	< 10				80%	120%
Те	1	3933654	< 10	< 10	0.0%	< 10				80%	120%
Th	1	3933654	24	24	0.0%	< 5				80%	120%
Ti	1	3933654	0.14	0.14	0.0%	< 0.01				80%	120%
П	1	3933654	< 5	< 5	0.0%	< 5				80%	120%
U	1	3933654	< 5	< 5	0.0%	< 5				80%	120%
V	1	3933654	32.3	32.3	0.0%	< 0.5				80%	120%
											120%
W	1	3933654	< 1	< 1	0.0%	< 1				80%	

Quality Assurance

Solid Analysis (Continued)											
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL	
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Acceptal Lower	Upper
Υ	1	3933654	8	8	0.0%	< 1	6	7	86%	80%	120%
Zn	1	3933654	47.1	47.4	0.6%	< 0.5				80%	120%
Zr	1	3933654	13	13	0.0%	< 5				80%	120%
Aqua Regia Digest - Metals Package, IC	CP-OES fin	ish (201073)									
Ag	1	3933719	< 0.2	< 0.2	0.0%	< 0.2	14.9	13.0	115%	80%	120%
Al	1	3933719	1.35	1.30	3.8%	< 0.01				80%	120%
As	1	3933719	1350	1190	12.6%	< 1				80%	120%
В	1	3933719	20	20	0.0%	< 5				80%	120%
Ва	1	3933719	127	120	5.7%	< 1				80%	120%
Ве	1	3933719	1.70	1.62	4.8%	< 0.5				80%	120%
Bi	1	3933719	< 1	< 1	0.0%	< 1				80%	120%
Ca	1	3933719	1.25	1.23	1.6%	< 0.01				80%	120%
Cd	1	3933719	< 0.5	< 0.5	0.0%	< 0.5				80%	120%
Ce	1	3933719	163	163	0.0%	< 1				80%	120%
Co	1	3933719	11.5	11.2	2.6%	< 0.5				80%	120%
Cr	1	3933719	44.5	43.3	2.7%	< 0.5				80%	120%
Cu	1	3933719	52.0	51.0	1.9%	< 0.5				80%	120%
Fe	1	3933719	2.93	2.89	1.4%	< 0.01				80%	120%
Ga	1	3933719	7	7	0.0%	< 5				80%	120%
Hg	1	3933719	< 1	< 1	0.0%	< 1				80%	120%
In	1	3933719	< 1	< 1	0.0%	· < 1				80%	120%
К	1	3933719	1.11	1.08	2.7%	< 0.01				80%	120%
La	1	3933719	75	76	1.3%	< 1				80%	120%
Li	1	3933719	22	21	4.7%	< 1				80%	120%
Mg	1	3933719	1.06	1.04	1.9%	< 0.01				80%	120%
Mn	1	3933719	537	526	2.1%	< 1				80%	120%
Мо	1	3933719	1.78	1.71	4.0%	< 0.5				80%	120%
Na	1	3933719	0.08	0.08	0.0%	< 0.01				80%	120%
Ni	1	3933719	20.8	20.6	1.0%	< 0.5				80%	120%
Р	1	3933719	1440	1430	0.7%	< 10	693	600	115%	80%	120%
Pb	1	3933719	16.1	15.5	3.8%	< 0.5	000	000	1.070	80%	120%
Rb	1	3933719	210	203	3.4%	< 10				80%	120%
S	1	3933719	0.225	0.229	1.8%	< 0.005				80%	120%
Sb	1	3933719	< 1	2	,.	< 1				80%	120%
Sc	1	3933719	3.78	3.69	2.4%	< 0.5				80%	120%
Se	1	3933719	< 10	< 10	0.0%	< 10				80%	120%
Sn	1	3933719	< 5	< 5	0.0%	< 5				80%	120%
Sr	1	3933719	41.7	39.6	5.2%	< 0.5				80%	120%
Та	1	3933719	< 10	< 10	0.0%	< 10				80%	120%
To	4	2022740	<i>-</i> 10	~ 10	0.00/	<i>-</i> 10				900/	1200/
Te Th	1 1	3933719	< 10	< 10	0.0%	< 10				80% 80%	120%
Ti	1	3933719 3933719	18 n 190	18 0.184	0.0% 3.2%	< 5 < 0.01				80% 80%	120% 120%
TI	1	3933719	0.190 < 5	0.16 4 < 5	0.0%	< 5				80%	120%
U	1	3933719	< 5 < 5	< 5 < 5	0.0%	< 5 < 5				80%	120%
	I	3333113	- 0	- 0	0.070	~ 5				0070	12070

Quality Assurance

Solid Analysis (Continued)												
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result Value	Expect Value	Recovery	Accepta Lower	ble Limits Upper	
V	1	3933719	54.2	52.9	2.4%	< 0.5				80%	120%	
W	1	3933719	10	11	9.5%	< 1				80%	120%	
Υ	1	3933719	11	11	0.0%	< 1	6	7	85%	80%	120%	
Zn	1	3933719	66.1	65.0	1.7%	< 0.5				80%	120%	
Zr	1	3933719	12	12	0.0%	< 5				80%	120%	
Aqua Regia Digest - Metals Package, IC	P-OES fin	ish (201073)										
Ag	1	3933731	< 0.2	< 0.2	0.0%	< 0.2	15.2	13.0	117%	80%	120%	
Al	1	3933731	1.81	1.75	3.4%	< 0.01				80%	120%	
As	1	3933731	73	70	4.2%	< 1				80%	120%	
В	1	3933731	28	27	3.6%	< 5				80%	120%	
Ba	1	3933731	152	146	4.0%	< 1				80%	120%	
Ве	1	3933731	2.3	2.2	4.4%	< 0.5				80%	120%	
Bi	1	3933731	< 1	< 1	0.0%	< 1				80%	120%	
Ca	1	3933731	1.26	1.25	0.8%	< 0.01				80%	120%	
Cd	1	3933731	< 0.5	< 0.5	0.0%	< 0.5				80%	120%	
Се	1	3933731	197	195	1.0%	< 1				80%	120%	
Со	1	3933731	14.3	14.4	0.7%	< 0.5				80%	120%	
Cr	1	3933731	61.6	59.9	2.8%	< 0.5				80%	120%	
Cu	1	3933731	46.6	45.3	2.8%	< 0.5	6067	6000	101%	80%	120%	
Fe	1	3933731	3.78	3.70	2.1%	< 0.01				80%	120%	
Ga	1	3933731	9	9	0.0%	< 5				80%	120%	
Hg	1	3933731	< 1	< 1	0.0%	< 1				80%	120%	
In	1	3933731	< 1	< 1	0.0%	< 1				80%	120%	
K	1	3933731	1.61	1.56	3.2%	< 0.01				80%	120%	
La	1	3933731	90	88	2.2%	< 1				80%	120%	
Li	1	3933731	41	40	2.5%	< 1				80%	120%	
Mg	1	3933731	1.43	1.40	2.1%	< 0.01				80%	120%	
Mn	1	3933731	714	694	2.8%	< 1				80%	120%	
Mo	1	3933731	3.09	3.17	2.6%	< 0.5				80%	120%	
Na	1	3933731	0.08	0.08	0.0%	< 0.01				80%	120%	
Ni	1	3933731	27.4	27.4	0.0%	< 0.5				80%	120%	
Р	1	3933731	1690	1670	1.2%	< 10	665	600	111%	80%	120%	
Pb	1	3933731	17.9	21.1	16.4%	< 0.5				80%	120%	
Rb	1	3933731	376	356	5.5%	< 10				80%	120%	
S	1	3933731	0.0445	0.0444	0.2%	< 0.005				80%	120%	
Sb	1	3933731	1	1	0.0%	< 1				80%	120%	
Sc	1	3933731	4.46	4.28	4.1%	< 0.5				80%	120%	
Se	1	3933731	< 10	< 10	0.0%	< 10				80%	120%	
Sn	1	3933731	< 5	< 5	0.0%	< 5				80%	120%	
Sr	1	3933731	45.8	45.8	0.0%	< 0.5				80%	120%	
Та	1	3933731	< 10	< 10	0.0%	< 10				80%	120%	
Те	1	3933731	< 10	< 10	0.0%	< 10				80%	120%	
Th	1	3933731	36	36	0.0%	< 5				80%	120%	
Ti	1	3933731	0.26	0.26	0.0%	< 0.01				80%	120%	
TI	1	3933731	< 5	< 5	0.0%	< 5				80%	120%	

Quality Assurance

Solid Analysis (Continued)												
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD	Method Blank	Result	Expect	Recovery	Accepta	ble Limits	
							Value	Value	,	Lower	Upper	
U	1	3933731	< 5	< 5	0.0%	< 5				80%	120%	
V	1	3933731	70.3	68.4	2.7%	< 0.5				80%	120%	
W	1	3933731	3	1		< 1				80%	120%	
Υ	1	3933731	15	15	0.0%	< 1	6	7	83%	80%	120%	
Zn	1	3933731	72.3	70.2	2.9%	< 0.5				80%	120%	
Zr	1	3933731	8	7	13.3%	< 5				80%	120%	
Aqua Regia Digest - Metals Package,	ICP-OES fin	ish (201073)										
Ag	1	3933743	0.33	0.38	14.1%	< 0.2				80%	120%	
Al	1	3933743	1.93	1.96	1.5%	< 0.01				80%	120%	
As	1	3933743	86	88	2.3%	< 1				80%	120%	
В	1	3933743	30	31	3.3%	< 5				80%	120%	
Ва	1	3933743	115	119	3.4%	< 1				80%	120%	
Ве	1	3933743	2.54	2.66	4.6%	< 0.5				80%	120%	
Bi	1	3933743	< 1	< 1	0.0%	< 1				80%	120%	
Ca	1	3933743	1.71	1.73	1.2%	< 0.01				80%	120%	
Cd	1	3933743	0.7	0.6	15.4%	< 0.5				80%	120%	
Се	1	3933743	255	253	0.8%	< 1				80%	120%	
Со	1	3933743	20.9	20.1	3.9%	< 0.5				80%	120%	
Cr	1	3933743	93.0	93.5	0.5%	< 0.5				80%	120%	
Cu	1	3933743	74.6	74.7	0.1%	< 0.5				80%	120%	
Fe	1	3933743	4.30	4.30	0.0%	< 0.01				80%	120%	
Ga	1	3933743	10	9	10.5%	< 5				80%	120%	
Hg	1	3933743	< 1	< 1	0.0%	< 1				80%	120%	
In	1	3933743	< 1	< 1	0.0%	< 1				80%	120%	
K	1	3933743	1.68	1.72		< 0.01				80%	120%	
La	1	3933743	120	1.72	2.4% 0.8%	< 1				80%	120%	
Li	1	3933743	31	31	0.0%	< 1				80%	120%	
Ma	4	0000740		4.00		.0.04				000/	4000/	
Mg	1	3933743	1.81	1.82	0.6%	< 0.01				80%	120%	
Mn	1	3933743	758	763	0.7%	< 1				80%	120%	
Mo	1	3933743	2.3	2.3	0.0%	< 0.5				80%	120%	
Na	1	3933743	0.07	0.07	0.0%	< 0.01				80%	120%	
Ni	1	3933743	52.8	52.2	1.1%	< 0.5				80%	120%	
P	1	3933743	1800	1800	0.0%	< 10				80%	120%	
Pb	1	3933743	22.9	21.4	6.8%	< 0.5				80%	120%	
Rb	1	3933743	382	388	1.6%	< 10				80%	120%	
S	1	3933743	1.49	1.48	0.7%	< 0.005				80%	120%	
Sb	1	3933743	3	< 1		< 1				80%	120%	
Sc	1	3933743	5.72	5.90	3.1%	< 0.5				80%	120%	
Se	1	3933743	< 10	< 10	0.0%	< 10				80%	120%	
Sn	1	3933743	< 5	< 5	0.0%	< 5				80%	120%	
Sr	1	3933743	56.3	58.6	4.0%	< 0.5				80%	120%	
Та	1	3933743	< 10	< 10	0.0%	< 10				80%	120%	
Те	1	3933743	11	11	0.0%	< 10				80%	120%	
Th	1	3933743	46	45	2.2%	< 5				80%	120%	

Quality Assurance

CLIENT NAME: CANADIAN STAR MINERALS LTD

AGAT WORK ORDER: 12U664020

PROJECT NO: WEST HAWK LAKE

ATTENTION TO: CHRIS NORTH

Solid Analysis (Continued)													
RPT Date: Dec 04, 2012			REPLIC	CATE				REFER	RENCE MATE	RIAL			
DADAMETED	Detek	0	Onininal	D #4	RPD	Method Blank	Result	Expect	B	Accepta	ble Limits		
PARAMETER	Batch	Sample Id	Original	Rep #1	RPD		Value	Value	Recovery	Lower	Upper		
Ti	1	3933743	0.285	0.294	3.1%	< 0.01				80%	120%		
TI	1	3933743	< 5	< 5	0.0%	< 5				80%	120%		
U	1	3933743	< 5	< 5	0.0%	< 5				80%	120%		
V	1	3933743	79.4	80.3	1.1%	< 0.5				80%	120%		
W	1	3933743	2	3		< 1				80%	120%		
Υ	1	3933743	15	16	6.5%	< 1				80%	120%		
Zn	1	3933743	72.7	73.0	0.4%	< 0.5				80%	120%		
Zr	1	3933743	13	14	7.4%	< 5				80%	120%		

Certified By:

y of stomus

Method Summary

CLIENT NAME: CANADIAN STAR MINERALS LTD

PROJECT NO: WEST HAWK LAKE

AGAT WORK ORDER: 12U664020 ATTENTION TO: CHRIS NORTH

PROJECT NO. WEST HAWK LAKE		ATTENTION TO.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			•
Ag	MIN-200-12020		ICP/OES
Al	MIN-200-12020		ICP/OES
As	MIN-200-12020		ICP/OES
В	MIN-200-12020		ICP/OES
Ва	MIN-200-12020		ICP/OES
Be	MIN-200-12020		ICP/OES
Bi	MIN-200-12020		ICP/OES
Ca	MIN-200-12020		ICP/OES
Cd	MIN-200-12020		ICP/OES
Ce	MIN-200-12020		ICP/OES
Co	MIN-200-12020		ICP/OES
Cr	MIN-200-12020		ICP/OES
Cu	MIN-200-12020 MIN-200-12020		ICP/OES
Fe	MIN-200-12020 MIN-200-12020		ICP/OES
			ICP/OES
Ga	MIN-200-12020		
Hg	MIN-200-12020		ICP/OES
ln	MIN-200-12020		ICP/OES
K	MIN-200-12020		ICP/OES
La 	MIN-200-12020		ICP/OES
Li	MIN-200-12020		ICP/OES
Mg	MIN-200-12020		ICP/OES
Mn	MIN-200-12020		ICP/OES
Mo	MIN-200-12020		ICP/OES
Na	MIN-200-12020		ICP/OES
Ni	MIN-200-12020		ICP/OES
P	MIN-200-12020		ICP/OES
Pb	MIN-200-12020		ICP/OES
Rb	MIN-200-12020		ICP/OES
S	MIN-200-12020		ICP/OES
Sb	MIN-200-12020		ICP/OES
Sc	MIN-200-12020		ICP/OES
Se	MIN-200-12020		ICP/OES
Sn	MIN-200-12020		ICP/OES
Sr	MIN-200-12020		ICP/OES
Та	MIN-200-12020		ICP/OES
Те	MIN-200-12020		ICP/OES
Th	MIN-200-12020		ICP/OES
Τi	MIN-200-12020		ICP/OES
_{ті}	MIN-200-12020		ICP/OES
U	MIN-200-12020		ICP/OES
V	MIN-200-12020		ICP/OES
w	MIN-200-12020		ICP/OES
Y	MIN-200-12020		ICP/OES
Zn	MIN-200-12020 MIN-200-12020		ICP/OES
Zr	MIN-200-12020 MIN-200-12020		ICP/OES
	IVIII 1- 200-12020		AA
As-OL	MINI 12000		
Sample Login Weight	MIN-12009	DUCDEE E. A Tauthank of Ein-	BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES

Method Summary

CLIENT NAME: CANADIAN STAR MINERALS LTD

PROJECT NO: WEST HAWK LAKE

AGAT WORK ORDER: 12U664020 ATTENTION TO: CHRIS NORTH

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Au-Grav			GRAVIMETRIC